Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

Overview

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion

Read our ICRA 2021 paper here.

Check out the 3 minute video for the quick intro or the full presentation video for more details.

This repo contains code for our ICRA 2021 paper. Benchmark results can be fully reproduced with minimal work, only need to edit data location variables. If desired, our ablation results can also be reproduced by need more adjustments. An earlier version of this paper has also appeared as a short 4-page paper at the CVPR 2020 MOTChallenge Workshop.


Improve your online 3D multi-object tracking performance by using 2D detections to support tracking when 3D association fails. The method adds minimal overhead, does not rely on dedicated hardware on any particular sensor setup. The current Python implementation run at 90 FPS on KITTI data and can definitely be optimized for actual deployment.

The framework is flexible to work with any 3D/2D detection sources (we used only off-the-shelf models) and can be extended to other tracking-related tasks, e.g. MOTS.

Visual

Abstract

Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time. Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal. On the other hand, cameras provide a dense and rich visual signal that helps to localize even distant objects, but only in the image domain. In this paper, we propose EagerMOT, a simple tracking formulation that eagerly integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics. Using images, we can identify distant incoming objects, while depth estimates allow for precise trajectory localization as soon as objects are within the depth-sensing range. With EagerMOT, we achieve state-of-the-art results across several MOT tasks on the KITTI and NuScenes datasets.

Diagram

Benchmark results

Our current standings on KITTI for 2D MOT on the official leaderboard. For 2D MOTS, see this page. Our current standings on NuScenes for 3D MOT on the official leaderboard.

How to set up

Download official NuScenes and KITTI data if you plan on running tracking on them. Change the paths to that data in configs/local_variables.py.

Also set a path to a working directory for each dataset - all files produced by EagerMOT will be saved in that directory, e.g. fused instances, tracking results. A subfolder will be created for each dataset for each split, for example, if the working directory is /workspace/kitti, then /workspace/kitti/training and /workspace/kitti/testing will be used for each data split. The split to be run is also specified in local_variables.py. For NuScenes, the version of the dataset (VERSION = "v1.0-trainval") also has to be modified in run_tracking.py when switching between train/test.

If running on KITTI, download ego_motion.zip from the drive and unzip it into the KITTI working directory specified above (either training or testing). NuScenes data is already in world coordinates, so no need to ego motion estimates.

Download 3D and 2D detections, which ones to download depends on what you want to run:

Our benchmark results were achieved with PointGNN + (MOTSFusion+RRC) for KITTI and CenterPoint + MMDetectionCascade for NuScenes.

Unzip detections anywhere you want and provide the path to the root method folder in the inputs/utils.py file.

Set up a virtual environment

  • if using conda:
conda create --name <env> --file requirements_conda.txt
  • if using pip:
python3 -m venv env
source env/bin/activate
pip install -r requirements_pip.txt

How to run

See run_tracking.py for the code that launches tracking. Modify which function that file calls, depending on which dataset you want to run. See nearby comments for instructions.

if __name__ == "__main__":
    # choose which one to run, comment out the other one
    run_on_nuscenes()  
    run_on_kitti()

Start the script with $python run_tracking.py. Check the code itself to see what is being called. I recommend following function calls to explore how the code is structured.

Overall, the code was written to allow customization and easy experimentation instead of optimizing for performance.

Soon, I am looking to extract the data loading module and push my visualization code into a separate repo to use for other projects.

Please cite our paper if you find the code useful

@inproceedings{Kim21ICRA,
  title     = {EagerMOT: 3D Multi-Object Tracking via Sensor Fusion},
  author    = {Kim, Aleksandr, O\v{s}ep, Aljo\v{s}a and Leal-Taix{'e}, Laura},
  booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
  year      = {2021}
}
Owner
Aleksandr Kim
Aleksandr Kim
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022