PyTorch implementation of SIFT descriptor

Overview

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can be used for descriptop-based learning shape of affine feature.

UPD 08/2019 : pytorch-sift is added to kornia and available by kornia.features.SIFTDescriptor

There are different implementations of the SIFT on the web. I tried to match Michal Perdoch implementation, which gives high quality features for image retrieval CVPR2009. However, on planar datasets, it is inferior to vlfeat implementation. The main difference is gaussian weighting window parameters, so I have made a vlfeat-like version too. MP version weights patch center much more (see image below, left) and additionally crops everything outside the circular region. Right is vlfeat version

Michal Perdoch kernel vlfeat kernel

descriptor_mp_mode = SIFTNet(patch_size = 65,
                        sigma_type= 'hesamp',
                        masktype='CircularGauss')

descriptor_vlfeat_mode = SIFTNet(patch_size = 65,
                        sigma_type= 'vlfeat',
                        masktype='Gauss')

Results:

hpatches mathing results

OPENCV-SIFT - mAP 
   Easy     Hard      Tough     mean
-------  -------  ---------  -------
0.47788  0.20997  0.0967711  0.26154

VLFeat-SIFT - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.466584  0.203966  0.0935743  0.254708

PYTORCH-SIFT-VLFEAT-65 - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.472563  0.202458  0.0910371  0.255353

NUMPY-SIFT-VLFEAT-65 - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.449431  0.197918  0.0905395  0.245963

PYTORCH-SIFT-MP-65 - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.430887  0.184834  0.0832707  0.232997

NUMPY-SIFT-MP-65 - mAP 
    Easy     Hard      Tough      mean
--------  -------  ---------  --------
0.417296  0.18114  0.0820582  0.226832


Speed:

  • 0.00246 s per 65x65 patch - numpy SIFT
  • 0.00028 s per 65x65 patch - C++ SIFT
  • 0.00074 s per 65x65 patch - CPU, 256 patches per batch
  • 0.00038 s per 65x65 patch - GPU (GM940, mobile), 256 patches per batch
  • 0.00038 s per 65x65 patch - GPU (GM940, mobile), 256 patches per batch

If you use this code for academic purposes, please cite the following paper:

@InProceedings{AffNet2018,
    title = {Repeatability Is Not Enough: Learning Affine Regions via Discriminability},
    author = {Dmytro Mishkin, Filip Radenovic, Jiri Matas},
    booktitle = {Proceedings of ECCV},
    year = 2018,
    month = sep
}

Owner
Dmytro Mishkin
Postdoc at CTU in Prague in computer Vision. Founder of Szkocka Research Group.
Dmytro Mishkin
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023