Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

Overview

New State-of-the-Art in Preposition Sense Disambiguation

Supervisor:

Institutions:

Project Description

The disambiguation of words is a central part of NLP tasks. In particular, there is the ambiguity of prepositions, which has been a problem in NLP for over a decade and still is. For example the preposition 'in' can have a temporal (e.g. in 2021) or a spatial (e.g. in Frankuft) meaning. A strong motivation behind the learning of these meanings are current research attempts to transfer text to artifical scenes. A good understanding of the real meaning of prepositions is crucial in order for the machine to create matching scenes.

With the birth of the transformer models in 2017 [1], attention based models have been pushing boundries in many NLP disciplines. In particular, bert, a transformer model by google and pre-trained on more than 3,000 M words, obtained state-of-the-art results on many NLP tasks and Corpus.

The goal of this project is to use modern transformer models to tackle the problem of preposition sense disambiguation. Therefore, we trained a simple bert model on the SemEval 2007 dataset [2], a central benchmark dataset for this task. To the best of our knowledge, the best purposed model for disambiguating the meanings of prepositions on the SemEval achives an accuracy of up to 88% [3]. Neither more recent approaches surpass this frontier[4][5] . Our model achives an accuracy of 90.84%, out-performing the current state-of-the-art.

How to train

To meet our goals, we cleand the SemEval 2007 dataset to only contain the needed information. We have added it to the repository and can be found in ./data/training-data.tsv.

Train a bert model:
First, install the requirements.txt. Afterwards, you can train the bert-model by:

python3 trainer.py --batch-size 16 --learning-rate 1e-4 --epochs 4 --data-path "./data/training_data.tsv"

The chosen hyper-parameters in the above example are tuned and already set by default. After training, this will save the weights and config to a new folder ./model_save/. Feel free to omit this training-step and use our trained weights directly.

Examples

We attach an example tagger, which can be used in an interactive manner. python3 -i tagger.py

Sourrond the preposition, for which you like to know the meaning of, with <head>...</head> and feed it to the tagger:

>>> tagger.tag("I am <head>in</head> big trouble")
Predicted Meaning: Indicating a state/condition/form, often a mental/emotional one that is being experienced 

>>> tagger.tag("I am speaking <head>in</head> portuguese.")
Predicted Meaning: Indicating the language, medium, or means of encoding (e.g., spoke in German)

>>> tagger.tag("He is swimming <head>with</head> his hands.")
Predicted Meaning: Indicating the means or material used to perform an action or acting as the complement of similar participle adjectives (e.g., crammed with, coated with, covered with)

>>> tagger.tag("She blinked <head>with</head> confusion.")
Predicted Meaning: Because of / due to (the physical/mental presence of) (e.g., boiling with anger, shining with dew)

References

[1] Vaswani, Ashish et al. (2017). Attention is all you need. Advances in neural information processing systems. P. 5998--6008.

[2] Litkowski, Kenneth C and Hargraves, Orin (2007). SemEval-2007 Task 06: Word-sense disambiguation of prepositions. Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007). P. 24--29

[3] Litkowski, Ken. (2013). Preposition disambiguation: Still a problem. CL Research, Damascus, MD.

[4] Gonen, Hila and Goldberg, Yoav. (2016). Semi supervised preposition-sense disambiguation using multilingual data. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. P. 2718--2729

[5] Gong, Hongyu and Mu, Jiaqi and Bhat, Suma and Viswanath, Pramod (2018). Preposition Sense Disambiguation and Representation. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. P. 1510--1521

Owner
Dirk Neuhäuser
Dirk Neuhäuser
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022