Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

Overview

New State-of-the-Art in Preposition Sense Disambiguation

Supervisor:

Institutions:

Project Description

The disambiguation of words is a central part of NLP tasks. In particular, there is the ambiguity of prepositions, which has been a problem in NLP for over a decade and still is. For example the preposition 'in' can have a temporal (e.g. in 2021) or a spatial (e.g. in Frankuft) meaning. A strong motivation behind the learning of these meanings are current research attempts to transfer text to artifical scenes. A good understanding of the real meaning of prepositions is crucial in order for the machine to create matching scenes.

With the birth of the transformer models in 2017 [1], attention based models have been pushing boundries in many NLP disciplines. In particular, bert, a transformer model by google and pre-trained on more than 3,000 M words, obtained state-of-the-art results on many NLP tasks and Corpus.

The goal of this project is to use modern transformer models to tackle the problem of preposition sense disambiguation. Therefore, we trained a simple bert model on the SemEval 2007 dataset [2], a central benchmark dataset for this task. To the best of our knowledge, the best purposed model for disambiguating the meanings of prepositions on the SemEval achives an accuracy of up to 88% [3]. Neither more recent approaches surpass this frontier[4][5] . Our model achives an accuracy of 90.84%, out-performing the current state-of-the-art.

How to train

To meet our goals, we cleand the SemEval 2007 dataset to only contain the needed information. We have added it to the repository and can be found in ./data/training-data.tsv.

Train a bert model:
First, install the requirements.txt. Afterwards, you can train the bert-model by:

python3 trainer.py --batch-size 16 --learning-rate 1e-4 --epochs 4 --data-path "./data/training_data.tsv"

The chosen hyper-parameters in the above example are tuned and already set by default. After training, this will save the weights and config to a new folder ./model_save/. Feel free to omit this training-step and use our trained weights directly.

Examples

We attach an example tagger, which can be used in an interactive manner. python3 -i tagger.py

Sourrond the preposition, for which you like to know the meaning of, with <head>...</head> and feed it to the tagger:

>>> tagger.tag("I am <head>in</head> big trouble")
Predicted Meaning: Indicating a state/condition/form, often a mental/emotional one that is being experienced 

>>> tagger.tag("I am speaking <head>in</head> portuguese.")
Predicted Meaning: Indicating the language, medium, or means of encoding (e.g., spoke in German)

>>> tagger.tag("He is swimming <head>with</head> his hands.")
Predicted Meaning: Indicating the means or material used to perform an action or acting as the complement of similar participle adjectives (e.g., crammed with, coated with, covered with)

>>> tagger.tag("She blinked <head>with</head> confusion.")
Predicted Meaning: Because of / due to (the physical/mental presence of) (e.g., boiling with anger, shining with dew)

References

[1] Vaswani, Ashish et al. (2017). Attention is all you need. Advances in neural information processing systems. P. 5998--6008.

[2] Litkowski, Kenneth C and Hargraves, Orin (2007). SemEval-2007 Task 06: Word-sense disambiguation of prepositions. Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007). P. 24--29

[3] Litkowski, Ken. (2013). Preposition disambiguation: Still a problem. CL Research, Damascus, MD.

[4] Gonen, Hila and Goldberg, Yoav. (2016). Semi supervised preposition-sense disambiguation using multilingual data. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. P. 2718--2729

[5] Gong, Hongyu and Mu, Jiaqi and Bhat, Suma and Viswanath, Pramod (2018). Preposition Sense Disambiguation and Representation. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. P. 1510--1521

Owner
Dirk Neuhäuser
Dirk Neuhäuser
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022