Model Zoo for AI Model Efficiency Toolkit

Overview

Qualcomm Innovation Center, Inc.

Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance. Results demonstrate that quantized models can provide good accuracy, comparable to floating point models. Together with results, we also provide recipes for users to quantize floating-point models using the AI Model Efficiency ToolKit (AIMET).

Table of Contents

Introduction

Quantized inference is significantly faster than floating-point inference, and enables models to run in a power-efficient manner on mobile and edge devices. We use AIMET, a library that includes state-of-the-art techniques for quantization, to quantize various models available in TensorFlow and PyTorch frameworks. The list of models is provided in the sections below.

An original FP32 source model is quantized either using post-training quantization (PTQ) or Quantization-Aware-Training (QAT) technique available in AIMET. Example scripts for evaluation are provided for each model. When PTQ is needed, the evaluation script performs PTQ before evaluation. Wherever QAT is used, the fine-tuned model checkpoint is also provided.

Tensorflow Models

Model Zoo

Network Model Source [1] Floating Pt (FP32) Model [2] Quantized Model [3] Results [4] Documentation
ResNet-50 (v1) GitHub Repo Pretrained Model See Documentation (ImageNet) Top-1 Accuracy
FP32: 75.21%
INT8: 74.96%
ResNet50.md
MobileNet-v2-1.4 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 75%
INT8: 74.21%
MobileNetV2.md
EfficientNet Lite GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 74.93%
INT8: 74.99%
EfficientNetLite.md
SSD MobileNet-v2 GitHub Repo Pretrained Model See Example (COCO) Mean Avg. Precision (mAP)
FP32: 0.2469
INT8: 0.2456
SSDMobileNetV2.md
RetinaNet GitHub Repo Pretrained Model See Example (COCO) mAP
FP32: 0.35
INT8: 0.349
Detailed Results
RetinaNet.md
Pose Estimation Based on Ref. Based on Ref. Quantized Model (COCO) mAP
FP32: 0.383
INT8: 0.379,
Mean Avg.Recall (mAR)
FP32: 0.452
INT8: 0.446
PoseEstimation.md
SRGAN GitHub Repo Pretrained Model See Example (BSD100) PSNR/SSIM
FP32: 25.45/0.668
INT8: 24.78/0.628
INT8W/INT16Act.: 25.41/0.666
Detailed Results
SRGAN.md

[1] Original FP32 model source
[2] FP32 model checkpoint
[3] Quantized Model: For models quantized with post-training technique, refers to FP32 model which can then be quantized using AIMET. For models optimized with QAT, refers to model checkpoint with fine-tuned weights. 8-bit weights and activations are typically used. For some models, 8-bit weights and 16-bit activations (INT8W/INT16Act.) are used to further improve performance of post-training quantization.
[4] Results comparing float and quantized performance
[5] Script for quantized evaluation using the model referenced in “Quantized Model” column

Detailed Results

RetinaNet

(COCO dataset)

Average Precision/Recall @[ IoU | area | maxDets] FP32 INT8
Average Precision @[ 0.50:0.95 | all | 100 ] 0.350 0.349
Average Precision @[ 0.50 | all | 100 ] 0.537 0.536
Average Precision @[ 0.75 | all | 100 ] 0.374 0.372
Average Precision @[ 0.50:0.95 | small | 100 ] 0.191 0.187
Average Precision @[ 0.50:0.95 | medium | 100 ] 0.383 0.381
Average Precision @[ 0.50:0.95 | large | 100 ] 0.472 0.472
Average Recall @[ 0.50:0.95 | all | 1 ] 0.306 0.305
Average Recall @[0.50:0.95 | all | 10 ] 0.491 0.490
Average Recall @[ 0.50:0.95 | all |100 ] 0.533 0.532
Average Recall @[ 0.50:0.95 | small | 100 ] 0.345 0.341
Average Recall @[ 0.50:0.95 | medium | 100 ] 0.577 0.577
Average Recall @[ 0.50:0.95 | large | 100 ] 0.681 0.679

SRGAN

Model Dataset PSNR SSIM
FP32 Set5/Set14/BSD100 29.17/26.17/25.45 0.853/0.719/0.668
INT8/ACT8 Set5/Set14/BSD100 28.31/25.55/24.78 0.821/0.684/0.628
INT8/ACT16 Set5/Set14/BSD100 29.12/26.15/25.41 0.851/0.719/0.666

PyTorch Models

Model Zoo

Network Model Source [1] Floating Pt (FP32) Model [2] Quantized Model [3] Results [4] Documentation
MobileNetV2 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 71.67%
INT8: 71.14%
MobileNetV2.md
EfficientNet-lite0 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 75.42%
INT8: 74.44%
EfficientNet-lite0.md
DeepLabV3+ GitHub Repo Pretrained Model Quantized Model (PascalVOC) mIOU
FP32: 72.62%
INT8: 72.22%
DeepLabV3.md
MobileNetV2-SSD-Lite GitHub Repo Pretrained Model Quantized Model (PascalVOC) mAP
FP32: 68.7%
INT8: 68.6%
MobileNetV2-SSD-lite.md
Pose Estimation Based on Ref. Based on Ref. Quantized Model (COCO) mAP
FP32: 0.364
INT8: 0.359
mAR
FP32: 0.436
INT8: 0.432
PoseEstimation.md
SRGAN GitHub Repo Pretrained Model (older version from here) See Example (BSD100) PSNR/SSIM
FP32: 25.51/0.653
INT8: 25.5/0.648
Detailed Results
SRGAN.md
DeepSpeech2 GitHub Repo Pretrained Model See Example (Librispeech Test Clean) WER
FP32
9.92%
INT8: 10.22%
DeepSpeech2.md

[1] Original FP32 model source
[2] FP32 model checkpoint
[3] Quantized Model: For models quantized with post-training technique, refers to FP32 model which can then be quantized using AIMET. For models optimized with QAT, refers to model checkpoint with fine-tuned weights. 8-bit weights and activations are typically used. For some models, 8-bit weights and 16-bit weights are used to further improve performance of post-training quantization.
[4] Results comparing float and quantized performance
[5] Script for quantized evaluation using the model referenced in “Quantized Model” column

Detailed Results

SRGAN Pytorch

Model Dataset PSNR SSIM
FP32 Set5/Set14/BSD100 29.93/26.58/25.51 0.851/0.709/0.653
INT8 Set5/Set14/BSD100 29.86/26.59/25.55 0.845/0.705/0.648

Examples

Install AIMET

Before you can run the example script for a specific model, you need to install the AI Model Efficiency ToolKit (AIMET) software. Please see this Getting Started page for an overview. Then install AIMET and its dependencies using these Installation instructions.

NOTE: To obtain the exact version of AIMET software that was used to test this model zoo, please install release 1.13.0 when following the above instructions.

Running the scripts

Download the necessary datasets and code required to run the example for the model of interest. The examples run quantized evaluation and if necessary apply AIMET techniques to improve quantized model performance. They generate the final accuracy results noted in the table above. Refer to the Docs for TensorFlow or PyTorch folder to access the documentation and procedures for a specific model.

Team

AIMET Model Zoo is a project maintained by Qualcomm Innovation Center, Inc.

License

Please see the LICENSE file for details.

Comments
  • Added PyTorch FFNet model, added INT4 to several models

    Added PyTorch FFNet model, added INT4 to several models

    Added the following new model: PyTorch FFNet Added INT4 quantization support to the following models:

    • Pytorch Classification (regnet_x_3_2gf, resnet18, resnet50)
    • PyTorch HRNet Posenet
    • PyTorch HRNet
    • PyTorch EfficientNet Lite0
    • PyTorch DeeplabV3-MobileNetV2

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • Added TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models

    Added TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models

    Added two new models - TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models Fixed TF version for 2 models in README file Minor updates to Tensorflow EfficientNet Lite-0 doc and PyTorch ssd_mobilenetv2 script

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • Updated post estimation evaluation code and documentation for updated…

    Updated post estimation evaluation code and documentation for updated…

    … model .pth file with weights state-dict Fixed model loading problem by including model definition in pose_estimation_quanteval.py Add Quantizer Op Assumptions to Pose Estimation document

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • error when run the pose estimation example

    error when run the pose estimation example

    $ python3.6 pose_estimation_quanteval.py pe_weights.pth ./data/

    2022-05-24 22:37:22,500 - root - INFO - AIMET defining network with shared weights Traceback (most recent call last): File "pose_estimation_quanteval.py", line 700, in pose_estimation_quanteval(args) File "pose_estimation_quanteval.py", line 687, in pose_estimation_quanteval sim = quantsim.QuantizationSimModel(model, dummy_input=(1, 3, 128, 128), quant_scheme=args.quant_scheme) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/quantsim.py", line 157, in init self.connected_graph = ConnectedGraph(self.model, dummy_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 132, in init self._construct_graph(model, model_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 254, in _construct_graph module_tensor_shapes_map = ConnectedGraph._generate_module_tensor_shapes_lookup_table(model, model_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 244, in _generate_module_tensor_shapes_lookup_table run_hook_for_layers_with_given_input(model, model_input, forward_hook, leaf_node_only=False) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/utils.py", line 277, in run_hook_for_layers_with_given_input _ = model(*input_tensor) File "/home/jlchen/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1071, in _call_impl result = forward_call(*input, **kwargs) TypeError: forward() takes 2 positional arguments but 5 were given

    opened by sundyCoder 0
  • I try to quantize deepspeech demo,but error happend

    I try to quantize deepspeech demo,but error happend

    ImportError: /home/mi/anaconda3/envs/aimet/lib/python3.7/site-packages/aimet_common/x86_64-linux-gnu/aimet_tensor_quantizer-0.0.0-py3.7-linux-x86_64.egg/AimetTensorQuantizer.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _ZNK2at6Tensor8data_ptrIfEEPT_v

    platform:Ubuntu 18.04 GPU: nvidia 2070 CUDA:11.1 pytorch python:3.7

    opened by fmbao 0
  • Request for the MobileNet-V1-1.0 quantized (INT8) model.

    Request for the MobileNet-V1-1.0 quantized (INT8) model.

    Thank you for sharing these valuable models. I'd like to evaluate and look into the 'MobileNet-v1-1.0' model quantized by the DFQ. I'd appreciate it if you could provide the quantized MobileNet-v1-1.0 model either in TF or in PyTorch.

    opened by yschoi-dev 0
  • What's the runtime and AI Framework for DeepSpeech2?

    What's the runtime and AI Framework for DeepSpeech2?

    For DeepSpeech2, may I know what's the runtime for it's quantized (INT8 ) model, Hexagan DSP, NPU or others? And what's the AI framework, SNPE, Hexagan NN or others? Thanks~

    opened by sunfangxun 0
  • Unable to replicate DeepLabV3 Pytorch Tutorial numbers

    Unable to replicate DeepLabV3 Pytorch Tutorial numbers

    I've been working through the DeepLabV3 Pytorch tutorial, which can be founded here: https://github.com/quic/aimet-model-zoo/blob/develop/zoo_torch/Docs/DeepLabV3.md.

    However, when running the evaluation script using optimized checkpoint, I am unable to replicate the mIOU result that was listed in the table. The number that I got was 0.67 while the number reported by Qualcomm was 0.72. I was wondering if anyone have had this issue before and how to resolve it ?

    opened by LLNLanLeN 3
Releases(repo_restructured_1)
Owner
Qualcomm Innovation Center
Qualcomm Innovation Center
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021