(Personalized) Page-Rank computation using PyTorch

Overview

torch-ppr

Tests PyPI PyPI - Python Version PyPI - License Documentation Status Codecov status Cookiecutter template from @cthoyt Code style: black Contributor Covenant

This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GPU (or other accelerators).

πŸ’ͺ Getting Started

As a simple example, consider this simple graph with five nodes.

Its edge list is given as

>>> import torch
>>> edge_index = torch.as_tensor(data=[(0, 1), (1, 2), (1, 3), (2, 4)]).t()

We can use

>>> from torch_ppr import page_rank
>>> page_rank(edge_index=edge_index)
tensor([0.1269, 0.3694, 0.2486, 0.1269, 0.1281])

to calculate the page rank, i.e., a measure of global importance. We notice that the central node receives the largest importance score, while all other nodes have lower importance. Moreover, the two indistinguishable nodes 0 and 3 receive the same page rank.

We can also calculate personalized page rank which measures importance from the perspective of a single node. For instance, for node 2, we have

>>> from torch_ppr import personalized_page_rank
>>> personalized_page_rank(edge_index=edge_index, indices=[2])
tensor([[0.1103, 0.3484, 0.2922, 0.1103, 0.1388]])

Thus, the most important node is the central node 1, nodes 0 and 3 receive the same importance value which is below the value of the direct neighbor 4.

By the virtue of using PyTorch, the code seamlessly works on GPUs, too, and supports auto-grad differentiation. Moreover, the calculation of personalized page rank supports automatic batch size optimization via torch_max_mem.

πŸš€ Installation

The most recent release can be installed from PyPI with:

$ pip install torch_ppr

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/mberr/torch-ppr.git

πŸ‘ Contributing

Contributions, whether filing an issue, making a pull request, or forking, are appreciated. See CONTRIBUTING.md for more information on getting involved.

πŸ‘‹ Attribution

βš–οΈ License

The code in this package is licensed under the MIT License.

πŸͺ Cookiecutter

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

πŸ› οΈ For Developers

See developer instructions

The final section of the README is for if you want to get involved by making a code contribution.

Development Installation

To install in development mode, use the following:

$ git clone git+https://github.com/mberr/torch-ppr.git
$ cd torch-ppr
$ pip install -e .

πŸ₯Ό Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

πŸ“– Building the Documentation

The documentation can be built locally using the following:

$ git clone git+https://github.com/mberr/torch-ppr.git
$ cd torch-ppr
$ tox -e docs
$ open docs/build/html/index.html

The documentation automatically installs the package as well as the docs extra specified in the setup.cfg. sphinx plugins like texext can be added there. Additionally, they need to be added to the extensions list in docs/source/conf.py.

πŸ“¦ Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses Bump2Version to switch the version number in the setup.cfg, src/torch_ppr/version.py, and docs/source/conf.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel using build
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.
Comments
  • `torch.sparse.mm` breaking API changes

    `torch.sparse.mm` breaking API changes

    Suddenly, everything stopped working 😱 presumably because of the changes to torch.sparse. Particularly, I am on PyTorch 1.10, master branch of PyKEEN and torch-ppr 0.0.5.

    Problem 1: the allclose() check does not pass now: https://github.com/mberr/torch-ppr/blob/921898f1a4b7770e6cdd1931e935262e456eb3c9/src/torch_ppr/utils.py#L221-L222

    MWE:

    import torch
    from torch_ppr import page_rank
    
    from pykeen.datasets import FB15k237
    
    dataset = FB15k237(create_inverse_triples=False)
    edges = dataset.training.mapped_triples[:, [0, 2]].t()
    pr = page_rank(edge_index=torch.cat([edges, edges.flip(0)], dim=-1), num_nodes=dataset.num_entities)
    
    >> ValueError: Invalid column sum: tensor([1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]). expected 1.0
    

    Looking into the debugger:

    • adj_sum does sum up to the number of nodes
    • the default tolerance fails the check, but if I reduce rtol=1e-4 or atol=1e-4 - the check passes

    Problem 2: the signature of torch.sparse.addmm has changed from the one used in power_iteration so the API call fails with the unknown kwarg error.

    https://github.com/mberr/torch-ppr/blob/921898f1a4b7770e6cdd1931e935262e456eb3c9/src/torch_ppr/utils.py#L310

    In fact, I can't find where those kwargs input, sparse, dense come from because the current signature has less readable mat, mat1, mat2. I traced to the very Torch 1.3.0 and still can't find where those originated from. Where does this signature come from? πŸ˜…

    My test env

    torch                 1.10.0
    torch-ppr             0.0.5
    
    opened by migalkin 7
  • Incorporating edge weights

    Incorporating edge weights

    Hello,

    Thank you for this great repository; it is a great, handy package that performs very well! I was wondering however; is it possible to incorporate edge weights into the personalized pagerank method?

    Best Filip

    opened by Filco306 5
  • RuntimeError torch.sparse.addmm different torch tensor shape

    RuntimeError torch.sparse.addmm different torch tensor shape

    Dear torch-ppr

    I installed torch-ppr on my Mac with python 3.9 and run the example code

    >>> import torch
    >>> edge_index = torch.as_tensor(data=[(0, 1), (1, 2), (1, 3), (2, 4)]).t()
    >>> from torch_ppr import page_rank
    >>> page_rank(edge_index)
    

    I got a runtimeerror as

    x = torch.sparse.addmm(input=x0, sparse=adj, dense=x, beta=alpha, alpha=beta)
    RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x4 and 2x1)
    

    I printed the shape of x0, adj and x

    torch.Size([2, 1])
    torch.Size([2, 4])
    torch.Size([2, 1])
    

    I believe that the shape of adj should be 2x2 or I might be wrong. I find the define process of adj.

    # convert to sparse matrix, shape: (n, n)
    adj = edge_index_to_sparse_matrix(edge_index=edge_index, num_nodes=num_nodes)
    adj = adj + adj.t()
    

    The adj is symmect.

    I wonder how to fix the runtimeError or any suggestions? Thanks in advanced meatball1982 12-May-2022 09:54:50

    opened by meatball1982 4
  • Expose API functions from top-level

    Expose API functions from top-level

    Also update cookiecutter package in https://github.com/cthoyt/cookiecutter-snekpack/commit/fa032ffc3c718c208d3a03e212aaa299c193de94 to have this be a part by default

    opened by cthoyt 2
  • Formulate page-rank as a torch.nn Layer

    Formulate page-rank as a torch.nn Layer

    Thank you for this repo!

    The reason to request a 'layer' fomulation is to convert the function page_rank to an onnx graph with torch.onnx (only accepts models).

    Once I have the onnx model, I can compile it different hardware (other than cuda).

    Maybe need just the forward pass, no need for a backward pass although I think the compute will be differentiable.

    Thanks.

    opened by LM-AuroTripathy 8
Releases(v0.0.8)
  • v0.0.8(Jul 20, 2022)

    What's Changed

    • Update error message of validate_adjacency by @mberr in https://github.com/mberr/torch-ppr/pull/18
    • Add option to add identity matrix by @mberr in https://github.com/mberr/torch-ppr/pull/20

    Full Changelog: https://github.com/mberr/torch-ppr/compare/v0.0.7...v0.0.8

    Source code(tar.gz)
    Source code(zip)
  • v0.0.7(Jun 29, 2022)

    What's Changed

    • Fix torch 1.12 compat by @mberr in https://github.com/mberr/torch-ppr/pull/17

    Full Changelog: https://github.com/mberr/torch-ppr/compare/v0.0.6...v0.0.7

    Source code(tar.gz)
    Source code(zip)
  • v0.0.6(Jun 29, 2022)

    What's Changed

    • Fix language tag in docs by @cthoyt in https://github.com/mberr/torch-ppr/pull/13
    • Fix torch.sparse.addmm use by @mberr in https://github.com/mberr/torch-ppr/pull/12
    • Enable CI on multiple versions of pytorch by @cthoyt in https://github.com/mberr/torch-ppr/pull/14
    • Improve sparse CSR support by @mberr in https://github.com/mberr/torch-ppr/pull/15
    • Increase numerical tolerance by @mberr in https://github.com/mberr/torch-ppr/pull/16

    Full Changelog: https://github.com/mberr/torch-ppr/compare/v0.0.5...v0.0.6

    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(May 12, 2022)

    What's Changed

    • Improve input validation by @mberr in https://github.com/mberr/torch-ppr/pull/10

    Full Changelog: https://github.com/mberr/torch-ppr/compare/v0.0.4...v0.0.5

    Source code(tar.gz)
    Source code(zip)
  • v0.0.4(May 10, 2022)

    What's Changed

    • Expose num_nodes parameter by @mberr in https://github.com/mberr/torch-ppr/pull/8

    Full Changelog: https://github.com/mberr/torch-ppr/compare/v0.0.3...v0.0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(May 10, 2022)

    What's Changed

    • Add imports to code examples in README by @cthoyt in https://github.com/mberr/torch-ppr/pull/6
    • Expose API functions from top-level by @cthoyt in https://github.com/mberr/torch-ppr/pull/7

    New Contributors

    • @cthoyt made their first contribution in https://github.com/mberr/torch-ppr/pull/6

    Full Changelog: https://github.com/mberr/torch-ppr/compare/v0.0.2...v0.0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(May 9, 2022)

    What's Changed

    • Fix device resolution order by @mberr in https://github.com/mberr/torch-ppr/pull/5

    Full Changelog: https://github.com/mberr/torch-ppr/compare/v0.0.1...v0.0.2

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(May 6, 2022)

Owner
Max Berrendorf
Max Berrendorf
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning πŸ†— πŸ†— πŸŽ‰ NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija TerΕ‘ek 39 Dec 28, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021