Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Overview

Face Identity Disentanglement via Latent Space Mapping

Description

Official Implementation of the paper Face Identity Disentanglement via Latent Space Mapping for both training and evaluation.

Face Identity Disentanglement via Latent Space Mapping
Yotam Nitzan1, Amit Bermano1, Yangyan Li2, Daniel Cohen-Or1
1Tel-Aviv University, 2Alibaba
https://arxiv.org/abs/2005.07728

Abstract: Learning disentangled representations of data is a fundamental problem in artificial intelligence. Specifically, disentangled latent representations allow generative models to control and compose the disentangled factors in the synthesis process. Current methods, however, require extensive supervision and training, or instead, noticeably compromise quality. In this paper, we present a method that learns how to represent data in a disentangled way, with minimal supervision, manifested solely using available pre-trained networks. Our key insight is to decouple the processes of disentanglement and synthesis, by employing a leading pre-trained unconditional image generator, such as StyleGAN. By learning to map into its latent space, we leverage both its state-of-the-art quality, and its rich and expressive latent space, without the burden of training it. We demonstrate our approach on the complex and high dimensional domain of human heads. We evaluate our method qualitatively and quantitatively, and exhibit its success with de-identification operations and with temporal identity coherency in image sequences. Through extensive experimentation, we show that our method successfully disentangles identity from other facial attributes, surpassing existing methods, even though they require more training and supervision.

Setup

To setup everything you need check out the setup instructions.

Training

Preparing the Dataset

The dataset is comprised of StyleGAN-generated images and W latent codes, both are generated from a single StyleGAN model.

We also use real images from FFHQ to evaluate quality at test time.

The dataset is assumed to be in the following structure:

Path Description
base directory Directory for all datasets
├  real FFHQ image dataset
├  dataset_N dataset for resolution NxN
│  ├  images images generated by StyleGAN
│  └  ws W latent codes generated by StyleGAN

To generate the dataset_N directory, run:

cd utils\
python generate_fake_data.py \ 
    --resolution N \
    --batch_size BATCH_SIZE \
    --output_path OUTPUT_PATH \
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --num_images NUM_IMAGES \
    --gpu GPU

It will generate an image dataset in similar format to FFHQ.

Start training

To train the model as done in the paper

python main.py
    NAME
    --resolution N
    --pretrained_models_path PRETRAINED_MODELS_PATH
    --dataset BASE_DATASET_DIR
    --batch_size BATCH_SIZE
    --cross_frequency 3
    --train_data_size 70000
    --results_dir RESULTS_DIR        

Please run python main.py -h for more details.

Inference

For convenience, there are a few inference functions - each serving a different use case. The functions are resolved using the name of the function.

All possible combinations in dirs

Input data: Two directories, one identity inputs and another for attribute inputs.
Runs over all N*M combinations in two directories.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_on_dirs

Paired data

Input data: Two directories, one identity inputs and another for attribute inputs.
The two directories are assumed to be paired. Inference runs on images with the same names.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_pairs

Disentangled interpolation

Interpolating attributes

Interpolating identity

Input data: A directory with any number of subdirectories. In each subdir, there are three images. All images should have exactly one of attr or id in their name. If there are two attr images and one id image, it will interpolate attribute. If there is one attr images and two id images, it will interpolate identity.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --input_dir PARENT_DIR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func interpolate

Checkpoints

Our pretrained 256x256 checkpoint is also available.

Citation

If you use this code for your research, please cite our paper using:

@article{Nitzan2020FaceID,
  title={Face identity disentanglement via latent space mapping},
  author={Yotam Nitzan and A. Bermano and Yangyan Li and D. Cohen-Or},
  journal={ACM Transactions on Graphics (TOG)},
  year={2020},
  volume={39},
  pages={1 - 14}
}
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022