Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Overview

Chinese mandarin text to speech based on Fastspeech2 and Unet

This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications to the origin paper, including:

  1. Use UNet instead of postnet (1d conv). Unet is good at recovering spect details and much easier to train than original postnet
  2. Added hanzi(汉字,chinese character) embedding. It's harder for human being to read pinyin, but easier to read chinese character. Also this makes it more end-to-end.
  3. Removed pitch and energy embedding, and also the corresponding prediction network. This makes its much easier to train, especially for my gtx1060 card. I will try bringing them back if I have time (and hardware resources)
  4. Use only waveglow in synth, as it's much better than melgan and griffin-lim.
  5. subtracted the mel-mean for (seems much) easier prediction.
  6. Changed the loss weight to mel_postnet_loss x 1.0 + d_loss x 0.01 + mel_loss x 0.1
  7. Used linear duration scale instead of log, and subtracted the duration_mean in training.

Dependencies

All experiments were done under ubuntu16.04 + python3.7 + torch 1.7.1. Other env probably works too.

  • torch for training and inference
  • librosa and ffmpeg for basic audio processing
  • pypinyin用于转换汉字为拼音
  • jieba 用于分词
  • perf_logger用于写训练日志

First clone the project

git clone https://github.com/ranchlai/mandarin-tts.git

If too slow, try

git clone https://hub.fastgit.org/ranchlai/mandarin-tts.git

To install all dependencies, run


sudo apt-get install ffmpeg
pip3 install -r requirements.txt

Synthesize

python synthesize.py --input="您的电话余额不足,请及时充值"

or put all text in input.txt, then

python synthesize.py --input="./input.txt"

Checkpoints and waveglow should be downloaded at 1st run. You will see some files in ./checkpoint, and ./waveglow

In case it fails, download the checkpoint manully here

Audio samples

Audio samples can be found in this page

page

Model architecture

arch

Training

(under testing)

Currently I am use baker dataset(标贝), which can be downloaded from baker。 The dataset is for non-commercial purpose only, and so is the pretrained model.

I have processed the data for this experiment. You can also try

python3 preprocess_pinyin.py 
python3 preprocess_hanzi.py 

to generate required aligments, mels, vocab for pinyin and hanzi for training. Everythin should be ready under the directory './data/'(you can change the directory in hparams.py) before training.

python3 train.py

you can monitor the log in '/home/<user>/.perf_logger/'

Best practice: copy the ./data folder to /dev/shm to avoid harddisk reading (if you have big enough memorry)

The following are some spectrograms synthesized at step 300000

spect spect spect

TODO

  • Clean the training code
  • Add gan for better spectrogram prediction
  • Add Aishell3 support

References

Owner
vision, audio and NLP
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023