FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

Overview

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

声明:

本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关!

简介

本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现有网络结构实现一个完整的落地项目,仅供人工智能自动控制等方面的学习研究,不可用于非法用途!!!

环境配置

1.软件环境
使用conda导入yolo.yaml

name: yolo
channels:
- pytorch
- conda-forge
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/pro
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
- defaults
dependencies:
- absl-py=0.13.0=py38haa95532_0
- aiohttp=3.7.4=py38h2bbff1b_1
- async-timeout=3.0.1=py38haa95532_0
- attrs=21.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- blinker=1.4=py38haa95532_0
- bottleneck=1.3.2=py38h2a96729_1
- brotli=1.0.9=ha925a31_2
- brotlipy=0.7.0=py38h2bbff1b_1003
- ca-certificates=2021.5.30=h5b45459_0
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2021.5.30=py38haa244fe_0
- cffi=1.14.6=py38h2bbff1b_0
- chardet=3.0.4=py38haa95532_1003
- click=8.0.1=pyhd3eb1b0_0
- cryptography=3.4.7=py38h71e12ea_0
- cudatoolkit=10.2.89=h74a9793_1
- cycler=0.10.0=py38_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=hd328e21_0
- google-auth=1.33.0=pyhd3eb1b0_0
- google-auth-oauthlib=0.4.1=py_2
- grpcio=1.35.0=py38hc60d5dd_0
- icc_rt=2019.0.0=h0cc432a_1
- icu=58.2=ha925a31_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=3.10.0=py38haa95532_0
- intel-openmp=2021.3.0=haa95532_3372
- jpeg=9b=hb83a4c4_2
- kiwisolver=1.3.1=py38hd77b12b_0
- libpng=1.6.37=h2a8f88b_0
- libprotobuf=3.17.2=h23ce68f_1
- libtiff=4.2.0=hd0e1b90_0
- libuv=1.40.0=he774522_0
- lz4-c=1.9.3=h2bbff1b_1
- markdown=3.3.4=py38haa95532_0
- matplotlib=3.4.2=py38haa95532_0
- matplotlib-base=3.4.2=py38h49ac443_0
- mkl=2021.3.0=haa95532_524
- mkl-service=2.4.0=py38h2bbff1b_0
- mkl_fft=1.3.0=py38h277e83a_2
- mkl_random=1.2.2=py38hf11a4ad_0
- msys2-conda-epoch=20160418=1
- multidict=5.1.0=py38h2bbff1b_2
- munkres=1.1.4=py_0
- ninja=1.7.2=0
- numexpr=2.7.3=py38hb80d3ca_1
- numpy=1.20.3=py38ha4e8547_0
- numpy-base=1.20.3=py38hc2deb75_0
- oauthlib=3.1.1=pyhd3eb1b0_0
- olefile=0.46=py_0
- openssl=1.1.1k=h8ffe710_1
- pandas=1.3.1=py38h6214cd6_0
- pillow=8.3.1=py38h4fa10fc_0
- pip=21.0.1=py38haa95532_0
- protobuf=3.17.2=py38hd77b12b_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pyjwt=2.1.0=py38haa95532_0
- pyopenssl=20.0.1=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pyqt=5.9.2=py38ha925a31_4
- pysocks=1.7.1=py38haa95532_0
- python=3.8.11=h6244533_1
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-mss=6.1.0=pyhd3deb0d_0
- python_abi=3.8=2_cp38
- pytorch=1.9.0=py3.8_cuda10.2_cudnn7_0
- pytz=2021.1=pyhd3eb1b0_0
- pyyaml=5.4.1=py38h2bbff1b_1
- qt=5.9.7=vc14h73c81de_0
- requests=2.25.1=pyhd3eb1b0_0
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- scipy=1.6.2=py38h66253e8_1
- seaborn=0.11.2=pyhd3eb1b0_0
- setuptools=52.0.0=py38haa95532_0
- sip=4.19.13=py38ha925a31_0
- six=1.16.0=pyhd3eb1b0_0
- sqlite=3.36.0=h2bbff1b_0
- tensorboard=2.5.0=py_0
- tensorboard-plugin-wit=1.6.0=py_0
- tk=8.6.10=he774522_0
- torchaudio=0.9.0=py38
- torchvision=0.10.0=py38_cu102
- tornado=6.1=py38h2bbff1b_0
- tqdm=4.62.1=pyhd3eb1b0_1
- typing-extensions=3.10.0.0=hd3eb1b0_0
- typing_extensions=3.10.0.0=pyh06a4308_0
- urllib3=1.26.6=pyhd3eb1b0_1
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.37.0=pyhd3eb1b0_0
- win_inet_pton=1.1.0=py38haa95532_0
- wincertstore=0.2=py38_0
- xz=5.2.5=h62dcd97_0
- yaml=0.2.5=he774522_0
- yarl=1.6.3=py38h2bbff1b_0
- zipp=3.5.0=pyhd3eb1b0_0
- zlib=1.2.11=h62dcd97_4
- zstd=1.4.9=h19a0ad4_0
- pip:
  - colorama==0.4.4
  - mouseinfo==0.1.3
  - opencv-python==4.5.3.56
  - polygon3==3.0.9.1
  - pyautogui==0.9.53
  - pygetwindow==0.0.9
  - pymsgbox==1.0.9
  - pyperclip==1.8.2
  - pyrect==0.1.4
  - pyscreeze==0.1.27
  - pytweening==1.0.3
  - tensorboard-data-server==0.6.1
  - thop==0.0.31-2005241907
prefix: D:\Miniconda3\envs\yolo

2.硬件环境

本项目中控制鼠标移动时使用了“易键鼠”。(也可以自行修改相关代码,使用pyautogui,pywin32等库来控制键盘鼠标)

使用方法

1.训练模型。

  • 本项目的训练方法请查看yolov5相关文档。

2.使用。

  • 启动前在utils/CFUtils.py文件中修改屏幕分辨率,检测框范围等参数。
  • 如需更换模型,请在CFdetect.py文件中修改模型位置。
  • 修改好相关参数后直接运行Main.py启动本项目。
Owner
Fabian
No Bio
Fabian
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022