FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

Overview

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation (CVPR 2021)

Eg1 Eg2

[project page] [paper] [Project Video]

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.

Dependencies

We used the following to train and test the model.

  • Ubuntu 18.04
  • Python==3.7.4
  • numpy==1.19.2
  • PyTorch==1.5.0, torchvision==0.6.0, cudatoolkit==10.1

Model

Training model on Vimeo-90K septuplets

For training your own model on the Vimeo-90K dataset, use the following command. You can download the dataset from this link. The results reported in the paper are trained using 8GPUs.

python main.py --batch_size 32 --test_batch_size 32 --dataset vimeo90K_septuplet --loss 1*L1 --max_epoch 200 --lr 0.0002 --data_root <dataset_path> --n_outputs 1

Training on GoPro dataset is similar, change n_outputs to 7 for 8x interpolation.

Testing using trained model.

Trained Models.

You can download the pretrained FLAVR models from the following links.

Method Trained Model
2x Link
4x Link
8x Link

2x Interpolation

For testing a pretrained model on Vimeo-90K septuplet validation set, you can run the following command:

python test.py --dataset vimeo90K_septuplet --data_root <data_path> --load_from <saved_model> --n_outputs 1

8x Interpolation

For testing a multiframe interpolation model, use the same command as above with multiframe FLAVR model, with n_outputs changed accordingly.

Time Benchmarking

The testing script, in addition to computing PSNR and SSIM values, will also output the inference time and speed for interpolation.

Evaluation on Middleburry

To evaluate on the public benchmark of Middleburry, run the following.

python Middleburry_Test.py --data_root <data_path> --load_from <model_path> 

The interpolated images will be saved to the folder Middleburry in a format that can be readily uploaded to the leaderboard.

SloMo-Filter on custom video

You can use our trained models and apply the slomo filter on your own video (requires OpenCV 4.2.0). Use the following command. If you want to convert a 30FPS video to 240FPS video, simply use the command

python interpolate.py --input_video <input_video> --factor 8 --load_model <model_path>

by using our pretrained model for 8x interpolation. For converting a 30FPS video to 60FPS video, use a 2x model with factor 2.

Baseline Models

We also train models for many other previous works on our setting, and provide models for all these methods. Complete benchmarking scripts will also be released soon.

Method PSNR on Vimeo Trained Model
FLAVR 36.3 Model
AdaCoF 35.3 Model
QVI 35.15 Model
DAIN 34.19 Model
SuperSloMo* 32.90 Model
  • SuperSloMo is implemented using code repository from here. Other baselines are implemented using the official codebases.

Google Colab

Coming soon ... !

Acknowledgement

The code is heavily borrowed from Facebook's official PyTorch video repository and CAIN.

Cite

If this code helps in your work, please consider citing us.

@article{kalluri2021flavr,
  title={FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation},
  author={Kalluri, Tarun and Pathak, Deepak and Chandraker, Manmohan and Tran, Du},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tarun K
Deep Learning. Mostly Python, PyTorch and Tensorflow.
Tarun K
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022