LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

Overview

LaneDet

Introduction

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

demo image

Table of Contents

Benchmark and model zoo

Supported backbones:

  • ResNet
  • ERFNet
  • VGG
  • DLA (comming soon)

Supported detectors:

Installation

Clone this repository

git clone https://github.com/turoad/lanedet.git

We call this directory as $LANEDET_ROOT

Create a conda virtual environment and activate it (conda is optional)

conda create -n lanedet python=3.8 -y
conda activate lanedet

Install dependencies

# Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

# Or you can install via pip
pip install torch torchvision

# Install python packages
python setup.py build develop

Data preparation

CULane

Download CULane. Then extract them to $CULANEROOT. Create link to data directory.

cd $RESA_ROOT
mkdir -p data
ln -s $CULANEROOT data/CULane

For CULane, you should have structure like this:

$CULANEROOT/driver_xx_xxframe    # data folders x6
$CULANEROOT/laneseg_label_w16    # lane segmentation labels
$CULANEROOT/list                 # data lists

Tusimple

Download Tusimple. Then extract them to $TUSIMPLEROOT. Create link to data directory.

cd $RESA_ROOT
mkdir -p data
ln -s $TUSIMPLEROOT data/tusimple

For Tusimple, you should have structure like this:

$TUSIMPLEROOT/clips # data folders
$TUSIMPLEROOT/lable_data_xxxx.json # label json file x4
$TUSIMPLEROOT/test_tasks_0627.json # test tasks json file
$TUSIMPLEROOT/test_label.json # test label json file

For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

python tools/generate_seg_tusimple.py --root $TUSIMPLEROOT
# this will generate seg_label directory

Getting Started

Training

For training, run

python main.py [configs/path_to_your_config] --gpus [gpu_ids]

For example, run

python main.py configs/resa/resa50_culane.py --gpus 0 1 2 3

Testing

For testing, run

python main.py [configs/path_to_your_config] --validate --load_from [path_to_your_model] [gpu_num]

For example, run

python main.py configs/resa/resa50_culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3

Currently, this code can output the visualization result when testing, just add --view. We will get the visualization result in work_dirs/xxx/xxx/visualization.

For example, run

python main.py configs/resa/resa50_culane.py --validate --load_from culane_resnet50.pth --gpus 0 --view

Contributing

We appreciate all contributions to improve LaneDet. Any pull requests or issues are welcomed.

Licenses

This project is released under the Apache 2.0 license.

Acknowledgement

Comments
  • How can I properly change the input image size on CondLane?

    How can I properly change the input image size on CondLane?

    Currently I'm detecting lanes using tools/detect.py.

    For Condlane inference, I changed this

    batch_size=1 # from 8 (for condlane inference)
    

    And tried these configs for FHD input image

    img_height = 1080 # from 320
    img_width = 1920 # from 800
    
    ori_img_h = 1080 # from 590
    ori_img_w = 1920 # from 1640
    
    crop_bbox = [0,540,1920,1080] # from [0, 270, 1640, 590]
    

    Changing img_scale = (800,320) results

    The size of tensor a must match the size of tensor b at non-singleton dimension 3
    

    How can I properly change the input image size (ex. FHD) on CondLane config file?

    opened by parkjbdev 20
  • curvature estimation

    curvature estimation

    Hello, I would like to know if there is any way to get real-time lane detection and curvature detection using deep learning. I have seen traditional computer vision algorithms but I am looking for a Deep Learning model that could help me out with this. Any suggestions will be very helpful. Thanks in advance.

    opened by k-nayak 9
  • Really bad inference results

    Really bad inference results

    The inference outputs from the model are really bad even for very easy images.

    1. Using Laneatt_Res18_Culane straight-lines2-laneatt-res18

    2. Using SCNN_Res50_Culane straight-lines2-scnn-res50

    Any idea why this is happening? I've just done normal inference without any changes.

    opened by sowmen 9
  • ImportError: connot import name 'nms_impl' form partially initialized module 'lanedet.ops' (most likely due to a circular improt)o)

    ImportError: connot import name 'nms_impl' form partially initialized module 'lanedet.ops' (most likely due to a circular improt)o)

    When I run: python tools/detect.py configs/resa/resa34_culane.py --img images --load_from resa_r34_culane.pth --savedir ./vis Traceback (most recent call last): File "D:/XXX/XXX/XXX/lanedet-main/tools/detect.py", line 8, in from lanedet.datasets.process import Process File "D:\XXX\XXX\XXX\lanedet-main\lanedet_init_.py", line 1, in from .ops import * File "D:\XXX\XXX\XXX\lanedet-main\lanedet\ops_init_.py", line 1, in from .nms import nms File "D:\XXX\XXX\XXX\lanedet-main\lanedet\ops\nms.py", line 29, in from . import nms_impl ImportError: cannot import name 'nms_impl' from partially initialized module 'lanedet.ops' (most likely due to a circular import) (D:\XXX\XXX\XXX\lanedet-main\lanedet\ops_init_.py)

    opened by readerrubic 8
  • custom image size for resa !

    custom image size for resa !

    Hello,

    I have tried testing with the CULane dataset with rsea and it is working well with the example video_example/05081544_0305/
    With the following image configuration: img_height = 288 img_width = 800 cut_height = 240 ori_img_h = 590 ori_img_w = 1640

    05081544_0305-000073

    But with custom image of configurations: img_height = 288 img_width = 800 cut_height = 240 ori_img_h = 1208 // 590 ori_img_w = 1920 //1640

    With above parameters: custom image 05081544_0305-000001

    With defaut parameters: custom image 05081544_0305-000001

    Could you please assist me which params needs to be tuned.

    Appreciate any response.

    Regards, Ajay

    opened by ajay1606 7
  • Can't convert the model to onnx

    Can't convert the model to onnx

    `sample_input = torch.rand((32, 3, 3, 3))

    torch.onnx.export( net1.module, # PyTorch Model sample_input, # Input tensor '/content/drive/MyDrive/MobileNetV2-model-onnx.onnx', # Output file (eg. 'output_model.onnx') opset_version = 12, # Operator support version input_names = ['input'], # Input tensor name (arbitary) output_names = ['output'] # Output tensor name (arbitary) )`

    Got this Error:

    TypeError Traceback (most recent call last) in () 5 opset_version=12, # Operator support version 6 input_names=['input'], # Input tensor name (arbitary) ----> 7 output_names=['output'] # Output tensor name (arbitary) 8 )

     21     def forward(self, batch):
     22         output = {}
    

    ---> 23 fea = self.backbone(batch['img']) 24 25 if self.aggregator:

    TypeError: new(): invalid data type 'str'

    enhancement 
    opened by AbdulFMS 6
  • HELP! A circular import error message appears in nms.py

    HELP! A circular import error message appears in nms.py

    from . import nms_impl ImportError: cannot import name 'nms_impl' from partially initialized module 'la nedet.ops' (most likely due to a circular import) (D:\lanedet-main\lanedet\ops_ init_.py)

    opened by 13xyz7 6
  • Unable to find model file

    Unable to find model file

    Hello, Thank you so much for sharing a very much useful repository.

    I have followed the step by step instructions given, and have downloaded all the datasets as mentioned in the below image

    image

    Training: python main.py configs/resa/resa50_culane.py --gpus 0

    After running the above command, i was able to see following window: image

    But i couldn't find any model file such as culane_resnet50.pth ,resa_r34_culane.pth !! As it mentioned in the example run case.

    Alternatively, is it possible to share the pre-trained model file?

    As I am a beginner, I greatly appreciate your understanding and kind response.

    Regards, Ajay

    opened by ajay1606 5
  • TypeError: expected string or bytes-like object

    TypeError: expected string or bytes-like object

    python setup.py build develop

    File "/home/zzj/anaconda3/envs/Lanedet/lib/python3.8/site-packages/pkg_resources/_vendor/packaging/version.py", line 275, in init match = self._regex.search(version) TypeError: expected string or bytes-like object

    ubuntu20.04 what can i do?

    opened by hzzzzjzyq 5
  • Error

    Error

    if don't modify (from .nms import nms) from lanedet/ops/init.py to (from . import *) there will be an error. and if don't modify (from . import nms_impl) from lanedet/ops/nms.py to (from . import *) there will be an error. And when run inference, there is no lanedet directory in the tools directory, resulting in module error from lanedet/tools/detect.py line 8~12. Is there any other way to remove the error?

    opened by gui-hoon 5
  • Mobilenetv2 for condlane got error.

    Mobilenetv2 for condlane got error.

    Hey @Turoad, thanks for your work, it's very useful. I recently customized to train condlane with mobilenetv2 backbone but got this error!!

    Traceback (most recent call last):
      File "main.py", line 65, in <module>
        main()
      File "main.py", line 35, in main
        runner.train()
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/engine/runner.py", line 94, in train
        self.train_epoch(epoch, train_loader)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/engine/runner.py", line 67, in train_epoch
        output = self.net(data)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/mmcv/parallel/data_parallel.py", line 42, in forward
        return super().forward(*inputs, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward
        return self.module(*inputs[0], **kwargs[0])
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/models/nets/detector.py", line 29, in forward
        fea = self.neck(fea)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/models/necks/fpn.py", line 113, in forward
        assert len(inputs) >= len(self.in_channels)
    AssertionError
    

    Can you help me clarify it? This is my config

    net = dict(
        type='Detector',
    )
    
    backbone = dict(
        type='MobileNet',
        net='MobileNetV2',
        pretrained=True,
        # replace_stride_with_dilation=[False, False, False],
        out_conv=False,
        # in_channels=[64, 128, 256, 512]
    )
    
    featuremap_out_channel = 1280
    featuremap_out_stride = 32 
    
    sample_y = range(590, 270, -8)
    
    batch_size = 8
    aggregator = dict(
        type='TransConvEncoderModule',
        in_dim=1280,
        attn_in_dims=[1280, 64],
        attn_out_dims=[64, 64],
        strides=[1, 1],
        ratios=[4, 4],
        pos_shape=(batch_size, 10, 25),
    )
    
    neck=dict(
        type='FPN',
        in_channels=[64, 128, 256, 64],
        out_channels=64,
        num_outs=4,
        #trans_idx=-1,
    )
    
    loss_weights=dict(
            hm_weight=1,
            kps_weight=0.4,
            row_weight=1.,
            range_weight=1.,
        )
    
    num_lane_classes=1
    heads=dict(
        type='CondLaneHead',
        heads=dict(hm=num_lane_classes),
        in_channels=(64, ),
        num_classes=num_lane_classes,
        head_channels=64,
        head_layers=1,
        disable_coords=False,
        branch_in_channels=64,
        branch_channels=64,
        branch_out_channels=64,
        reg_branch_channels=64,
        branch_num_conv=1,
        hm_idx=2,
        mask_idx=0,
        compute_locations_pre=True,
        location_configs=dict(size=(batch_size, 1, 80, 200), device='cuda:0')
    )
    
    optimizer = dict(type='AdamW', lr=3e-4, betas=(0.9, 0.999), eps=1e-8)
    optimizer = dict(type='SGD', lr=3e-3)
    
    epochs = 40
    total_iter = (88880 // batch_size) * epochs
    total_iter = (3688 // batch_size) * epochs
    
    import math
    scheduler = dict(
        type = 'MultiStepLR',
        milestones=[15, 25, 35],
        gamma=0.1
    )
    
    seg_loss_weight = 1.0
    eval_ep = 1
    save_ep = 1 
    
    img_norm = dict(
        mean=[75.3, 76.6, 77.6],
        std=[50.5, 53.8, 54.3]
    )
    
    img_height = 320 
    img_width = 800
    cut_height = 0 
    ori_img_h = 590
    ori_img_w = 1640
    
    mask_down_scale = 4
    hm_down_scale = 16
    num_lane_classes = 1
    line_width = 3
    radius = 6
    nms_thr = 4
    img_scale = (800, 320)
    crop_bbox = [0, 270, 1640, 590]
    mask_size = (1, 80, 200)
    
    train_process = [
        dict(type='Alaug',
        transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
        dict(
            type='Crop',
            x_min=crop_bbox[0],
            x_max=crop_bbox[2],
            y_min=crop_bbox[1],
            y_max=crop_bbox[3],
            p=1),
        dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),
        dict(
            type='OneOf',
            transforms=[
                dict(
                    type='RGBShift',
                    r_shift_limit=10,
                    g_shift_limit=10,
                    b_shift_limit=10,
                    p=1.0),
                dict(
                    type='HueSaturationValue',
                    hue_shift_limit=(-10, 10),
                    sat_shift_limit=(-15, 15),
                    val_shift_limit=(-10, 10),
                    p=1.0),
            ],
            p=0.7),
        dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
        dict(
            type='OneOf',
            transforms=[
                dict(type='Blur', blur_limit=3, p=1.0),
                dict(type='MedianBlur', blur_limit=3, p=1.0)
            ],
            p=0.2),
        dict(type='RandomBrightness', limit=0.2, p=0.6),
        dict(
            type='ShiftScaleRotate',
            shift_limit=0.1,
            scale_limit=(-0.2, 0.2),
            rotate_limit=10,
            border_mode=0,
            p=0.6),
        dict(
            type='RandomResizedCrop',
            height=img_scale[1],
            width=img_scale[0],
            scale=(0.8, 1.2),
            ratio=(1.7, 2.7),
            p=0.6),
        dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),]
        ),
        dict(type='CollectLane',
            down_scale=mask_down_scale,
            hm_down_scale=hm_down_scale,
            max_mask_sample=5,
            line_width=line_width,
            radius=radius,
            keys=['img', 'gt_hm'],
            meta_keys=[
                'gt_masks', 'mask_shape', 'hm_shape',
                'down_scale', 'hm_down_scale', 'gt_points'
            ]
        ),
        #dict(type='Resize', size=(img_width, img_height)),
        dict(type='Normalize', img_norm=img_norm),
        dict(type='ToTensor', keys=['img', 'gt_hm'], collect_keys=['img_metas']),
    ]
    
    
    val_process = [
        dict(type='Alaug',
            transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
                dict(type='Crop',
                x_min=crop_bbox[0],
                x_max=crop_bbox[2],
                y_min=crop_bbox[1],
                y_max=crop_bbox[3],
                p=1),
            dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1)]
        ),
        #dict(type='Resize', size=(img_width, img_height)),
        dict(type='Normalize', img_norm=img_norm),
        dict(type='ToTensor', keys=['img']),
    ]
    
    # dataset_path = './data/CULane'
    dataset_path = './data/Merge_data'
    # val_path = './data/CULane'
    dataset = dict(
        train=dict(
            type='CULane',
            data_root=dataset_path,
            split='train',
            processes=train_process,
        ),
        val=dict(
            type='CULane',
            data_root=dataset_path,
            split='test',
            processes=val_process,
        ),
        test=dict(
            type='CULane',
            data_root=dataset_path,
            split='test',
            processes=val_process,
        )
    )
    
    
    workers = 6
    log_interval = 100
    lr_update_by_epoch=True
    

    Thank you so much

    opened by luan1412167 4
  • CondLane如何修改检测的车道线数量?

    CondLane如何修改检测的车道线数量?

    使用测试kaist数据集测试[CondLane],最多只能检测出3条车道线,很明显的车道检测不出来,请问是限制了检测车道线数量了吗,在那里可以配置? https://github.com/Turoad/lanedet/issues/58#issuecomment-1131143127 按照此处的配置方法似乎不管用。 1559193232373910975

    opened by w-jinkui 0
  • PermissionError: [Errno 13] Permission denied: 'C:\\Users\\L00653~1\\AppData\\Local\\Temp\\tmphpklern8\\tmpkydalnxp.py'

    PermissionError: [Errno 13] Permission denied: 'C:\\Users\\L00653~1\\AppData\\Local\\Temp\\tmphpklern8\\tmpkydalnxp.py'

    Traceback (most recent call last): File "tools/detect.py", line 86, in process(args) File "tools/detect.py", line 68, in process cfg = Config.fromfile(args.config) File "d:\lanedet\lanedet\utils\config.py", line 180, in fromfile cfg_dict, cfg_text = Config._file2dict(filename) File "d:\lanedet\lanedet\utils\config.py", line 105, in _file2dict shutil.copyfile(filename, File "C:\Users\l00653465\Anaconda3\envs\lanedet\lib\shutil.py", line 264, in copyfile with open(src, 'rb') as fsrc, open(dst, 'wb') as fdst: PermissionError: [Errno 13] Permission denied: 'C:\Users\L00653~1\AppData\Local\Temp\tmphpklern8\tmpkydalnxp.py'

    在进行训练和测试的时候都会报这个错

    opened by Sober-xz 1
  • KeyError:  Unable to find

    KeyError: Unable to find "net" key in the trained model from detect.py

    Hi Guys,

    I am using this project on conda env with gpu configured. I was trying to just run the inference files first to try it out, but I get the following error:

    Traceback (most recent call last): File "c:\CULane\lanedet\tools\detect.py", line 86, in process(args) File "c:\CULane\lanedet\tools\detect.py", line 72, in process detect = Detect(cfg) File "c:\CULane\lanedet\tools\detect.py", line 24, in init load_network(self.net, self.cfg.load_from) File "c:\culane\lanedet\lanedet\utils\net_utils.py", line 48, in load_network net.load_state_dict(pretrained_model['net'], strict=True) KeyError: 'net'

    I have used following command: $ python detect.py' 'lanedet/configs/resa/resa34_culane.py' '--img' 'image\' '--load_from' 'C:\Users\blackbug\.cache\torch\hub\checkpoints\resnet34-333f7ec4.pth' '--savedir' './vis'

    I tried to look at the model loaded from the downloaded resnet model file; it looks valid with all the trained layers, just "net" isnt part of the dictionary. Any help is appreciated! Thank you!

    opened by kkarnatak 0
Owner
TuZheng
TuZheng
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022