Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Overview

Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Build Status PyPI version

Deep generative models are rapidly becoming popular for the discovery of new molecules and materials. Such models learn on a large collection of molecular structures and produce novel compounds. In this work, we introduce Molecular Sets (MOSES), a benchmarking platform to support research on machine learning for drug discovery. MOSES implements several popular molecular generation models and provides a set of metrics to evaluate the quality and diversity of generated molecules. With MOSES, we aim to standardize the research on molecular generation and facilitate the sharing and comparison of new models.

For more details, please refer to the paper.

If you are using MOSES in your research paper, please cite us as

@article{10.3389/fphar.2020.565644,
  title={{M}olecular {S}ets ({MOSES}): {A} {B}enchmarking {P}latform for {M}olecular {G}eneration {M}odels},
  author={Polykovskiy, Daniil and Zhebrak, Alexander and Sanchez-Lengeling, Benjamin and Golovanov, Sergey and Tatanov, Oktai and Belyaev, Stanislav and Kurbanov, Rauf and Artamonov, Aleksey and Aladinskiy, Vladimir and Veselov, Mark and Kadurin, Artur and Johansson, Simon and  Chen, Hongming and Nikolenko, Sergey and Aspuru-Guzik, Alan and Zhavoronkov, Alex},
  journal={Frontiers in Pharmacology},
  year={2020}
}

pipeline

Dataset

We propose a benchmarking dataset refined from the ZINC database.

The set is based on the ZINC Clean Leads collection. It contains 4,591,276 molecules in total, filtered by molecular weight in the range from 250 to 350 Daltons, a number of rotatable bonds not greater than 7, and XlogP less than or equal to 3.5. We removed molecules containing charged atoms or atoms besides C, N, S, O, F, Cl, Br, H or cycles longer than 8 atoms. The molecules were filtered via medicinal chemistry filters (MCFs) and PAINS filters.

The dataset contains 1,936,962 molecular structures. For experiments, we split the dataset into a training, test and scaffold test sets containing around 1.6M, 176k, and 176k molecules respectively. The scaffold test set contains unique Bemis-Murcko scaffolds that were not present in the training and test sets. We use this set to assess how well the model can generate previously unobserved scaffolds.

Models

Metrics

Besides standard uniqueness and validity metrics, MOSES provides other metrics to access the overall quality of generated molecules. Fragment similarity (Frag) and Scaffold similarity (Scaff) are cosine distances between vectors of fragment or scaffold frequencies correspondingly of the generated and test sets. Nearest neighbor similarity (SNN) is the average similarity of generated molecules to the nearest molecule from the test set. Internal diversity (IntDiv) is an average pairwise similarity of generated molecules. Fréchet ChemNet Distance (FCD) measures the difference in distributions of last layer activations of ChemNet. Novelty is a fraction of unique valid generated molecules not present in the training set.

Model Valid (↑) [email protected] (↑) [email protected] (↑) FCD (↓) SNN (↑) Frag (↑) Scaf (↑) IntDiv (↑) IntDiv2 (↑) Filters (↑) Novelty (↑)
Test TestSF Test TestSF Test TestSF Test TestSF
Train 1.0 1.0 1.0 0.008 0.4755 0.6419 0.5859 1.0 0.9986 0.9907 0.0 0.8567 0.8508 1.0 1.0
HMM 0.076±0.0322 0.623±0.1224 0.5671±0.1424 24.4661±2.5251 25.4312±2.5599 0.3876±0.0107 0.3795±0.0107 0.5754±0.1224 0.5681±0.1218 0.2065±0.0481 0.049±0.018 0.8466±0.0403 0.8104±0.0507 0.9024±0.0489 0.9994±0.001
NGram 0.2376±0.0025 0.974±0.0108 0.9217±0.0019 5.5069±0.1027 6.2306±0.0966 0.5209±0.001 0.4997±0.0005 0.9846±0.0012 0.9815±0.0012 0.5302±0.0163 0.0977±0.0142 0.8738±0.0002 0.8644±0.0002 0.9582±0.001 0.9694±0.001
Combinatorial 1.0±0.0 0.9983±0.0015 0.9909±0.0009 4.2375±0.037 4.5113±0.0274 0.4514±0.0003 0.4388±0.0002 0.9912±0.0004 0.9904±0.0003 0.4445±0.0056 0.0865±0.0027 0.8732±0.0002 0.8666±0.0002 0.9557±0.0018 0.9878±0.0008
CharRNN 0.9748±0.0264 1.0±0.0 0.9994±0.0003 0.0732±0.0247 0.5204±0.0379 0.6015±0.0206 0.5649±0.0142 0.9998±0.0002 0.9983±0.0003 0.9242±0.0058 0.1101±0.0081 0.8562±0.0005 0.8503±0.0005 0.9943±0.0034 0.8419±0.0509
AAE 0.9368±0.0341 1.0±0.0 0.9973±0.002 0.5555±0.2033 1.0572±0.2375 0.6081±0.0043 0.5677±0.0045 0.991±0.0051 0.9905±0.0039 0.9022±0.0375 0.0789±0.009 0.8557±0.0031 0.8499±0.003 0.996±0.0006 0.7931±0.0285
VAE 0.9767±0.0012 1.0±0.0 0.9984±0.0005 0.099±0.0125 0.567±0.0338 0.6257±0.0005 0.5783±0.0008 0.9994±0.0001 0.9984±0.0003 0.9386±0.0021 0.0588±0.0095 0.8558±0.0004 0.8498±0.0004 0.997±0.0002 0.6949±0.0069
JTN-VAE 1.0±0.0 1.0±0.0 0.9996±0.0003 0.3954±0.0234 0.9382±0.0531 0.5477±0.0076 0.5194±0.007 0.9965±0.0003 0.9947±0.0002 0.8964±0.0039 0.1009±0.0105 0.8551±0.0034 0.8493±0.0035 0.976±0.0016 0.9143±0.0058
LatentGAN 0.8966±0.0029 1.0±0.0 0.9968±0.0002 0.2968±0.0087 0.8281±0.0117 0.5371±0.0004 0.5132±0.0002 0.9986±0.0004 0.9972±0.0007 0.8867±0.0009 0.1072±0.0098 0.8565±0.0007 0.8505±0.0006 0.9735±0.0006 0.9498±0.0006

For comparison of molecular properties, we computed the Wasserstein-1 distance between distributions of molecules in the generated and test sets. Below, we provide plots for lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation of Drug-likeness (QED) and molecular weight.

logP SA
logP SA
weight QED
weight QED

Installation

PyPi

The simplest way to install MOSES (models and metrics) is to install RDKit: conda install -yq -c rdkit rdkit and then install MOSES (molsets) from pip (pip install molsets). If you want to use LatentGAN, you should also install additional dependencies using bash install_latentgan_dependencies.sh.

If you are using Ubuntu, you should also install sudo apt-get install libxrender1 libxext6 for RDKit.

Docker

  1. Install docker and nvidia-docker.

  2. Pull an existing image (4.1Gb to download) from DockerHub:

docker pull molecularsets/moses

or clone the repository and build it manually:

git clone https://github.com/molecularsets/moses.git
nvidia-docker image build --tag molecularsets/moses moses/
  1. Create a container:
nvidia-docker run -it --name moses --network="host" --shm-size 10G molecularsets/moses
  1. The dataset and source code are available inside the docker container at /moses:
docker exec -it molecularsets/moses bash

Manually

Alternatively, install dependencies and MOSES manually.

  1. Clone the repository:
git lfs install
git clone https://github.com/molecularsets/moses.git
  1. Install RDKit for metrics calculation.

  2. Install MOSES:

python setup.py install
  1. (Optional) Install dependencies for LatentGAN:
bash install_latentgan_dependencies.sh

Benchmarking your models

  • Install MOSES as described in the previous section.

  • Get train, test and test_scaffolds datasets using the following code:

import moses

train = moses.get_dataset('train')
test = moses.get_dataset('test')
test_scaffolds = moses.get_dataset('test_scaffolds')
  • You can use a standard torch DataLoader in your models. We provide a simple StringDataset class for convenience:
from torch.utils.data import DataLoader
from moses import CharVocab, StringDataset

train = moses.get_dataset('train')
vocab = CharVocab.from_data(train)
train_dataset = StringDataset(vocab, train)
train_dataloader = DataLoader(
    train_dataset, batch_size=512,
    shuffle=True, collate_fn=train_dataset.default_collate
)

for with_bos, with_eos, lengths in train_dataloader:
    ...
  • Calculate metrics from your model's samples. We recomend sampling at least 30,000 molecules:
import moses
metrics = moses.get_all_metrics(list_of_generated_smiles)
  • Add generated samples and metrics to your repository. Run the experiment multiple times to estimate the variance of the metrics.

Reproducing the baselines

End-to-End launch

You can run pretty much everything with:

python scripts/run.py

This will split the dataset, train the models, generate new molecules, and calculate the metrics. Evaluation results will be saved in metrics.csv.

You can specify the GPU device index as cuda:n (or cpu for CPU) and/or model by running:

python scripts/run.py --device cuda:1 --model aae

For more details run python scripts/run.py --help.

You can reproduce evaluation of all models with several seeds by running:

sh scripts/run_all_models.sh

Training

python scripts/train.py <model name> \
       --train_load <train dataset> \
       --model_save <path to model> \
       --config_save <path to config> \
       --vocab_save <path to vocabulary>

To get a list of supported models run python scripts/train.py --help.

For more details of certain model run python scripts/train.py <model name> --help.

Generation

python scripts/sample.py <model name> \
       --model_load <path to model> \
       --vocab_load <path to vocabulary> \
       --config_load <path to config> \
       --n_samples <number of samples> \
       --gen_save <path to generated dataset>

To get a list of supported models run python scripts/sample.py --help.

For more details of certain model run python scripts/sample.py <model name> --help.

Evaluation

python scripts/eval.py \
       --ref_path <reference dataset> \
       --gen_path <generated dataset>

For more details run python scripts/eval.py --help.

Owner
MOSES
A Benchmarking Platform for Molecular Generation Models
MOSES
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022