The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

Overview

ArXiv | Get Start

Neural-Texture-Extraction-Distribution

The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

We propose a Neural-Texture-Extraction-Distribution operation for controllable person image synthesis. Our model can be used to control the pose and appearance of a reference image:

  • Pose Control

  • Appearance Control

News

  • 2022.4.30 Colab demos are provided for quick exploration.
  • 2022.4.28 Code for PyTorch is available now!

Installation

Requirements

  • Python 3
  • PyTorch 1.7.1
  • CUDA 10.2

Conda Installation

# 1. Create a conda virtual environment.
conda create -n NTED python=3.6
conda activate NTED
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. Clone the Repo and Install dependencies
git clone --recursive https://github.com/RenYurui/Neural-Texture-Extraction-Distribution.git
pip install -r requirements.txt

# 3. Install mmfashion (for appearance control only)
pip install mmcv==0.5.1
pip install pycocotools==2.0.4
cd ./scripts
chmod +x insert_mmfashion2mmdetection.sh
./insert_mmfashion2mmdetection.sh
cd ../third_part/mmdetection
pip install -v -e .

Demo

Several demos are provided. Please first download the resources by runing

cd scripts
./download_demos.sh

Pose Transfer

Run the following code for the results.

PATH_TO_OUTPUT=./demo_results
python demo.py \
--config ./config/fashion_512.yaml \
--which_iter 495400 \
--name fashion_512 \
--file_pairs ./txt_files/demo.txt \
--input_dir ./demo_images \
--output_dir $PATH_TO_OUTPUT

Appearance Control

Meanwhile, run the following code for the appearance control demo.

python appearance_control.py \
--config ./config/fashion_512.yaml \
--name fashion_512 \
--which_iter 495400 \
--input_dir ./demo_images \
--file_pairs ./txt_files/appearance_control.txt

Colab Demo

Please check the Colab Demos for pose control and appearance control.

Dataset

  • Download img_highres.zip of the DeepFashion Dataset from In-shop Clothes Retrieval Benchmark.

  • Unzip img_highres.zip. You will need to ask for password from the dataset maintainers. Then rename the obtained folder as img and put it under the ./dataset/deepfashion directory.

  • We split the train/test set following GFLA. Several images with significant occlusions are removed from the training set. Download the train/test pairs and the keypoints pose.zip extracted with Openpose by runing:

    cd scripts
    ./download_dataset.sh

    Or you can download these files manually:

    • Download the train/test pairs from Google Drive including train_pairs.txt, test_pairs.txt, train.lst, test.lst. Put these files under the ./dataset/deepfashion directory.
    • Download the keypoints pose.rar extracted with Openpose from Google Driven. Unzip and put the obtained floder under the ./dataset/deepfashion directory.
  • Run the following code to save images to lmdb dataset.

    python -m scripts.prepare_data \
    --root ./dataset/deepfashion \
    --out ./dataset/deepfashion

Training

This project supports multi-GPUs training. The following code shows an example for training the model with 512x352 images using 4 GPUs.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 \
--master_port 1234 train.py \
--config ./config/fashion_512.yaml \
--name $name_of_your_experiment

All configs for this experiment are saved in ./config/fashion_512.yaml. If you change the number of GPUs, you may need to modify the batch_size in ./config/fashion_512.yaml to ensure using a same batch_size.

Inference

  • Download the trained weights for 512x352 images and 256x176 images. Put the obtained checkpoints under ./result/fashion_512 and ./result/fashion_256 respectively.

  • Run the following code to evaluate the trained model:

    # run evaluation for 512x352 images
    python -m torch.distributed.launch \
    --nproc_per_node=1 \
    --master_port 12345 inference.py \
    --config ./config/fashion_512.yaml \
    --name fashion_512 \
    --no_resume \
    --output_dir ./result/fashion_512/inference 
    
    # run evaluation for 256x176 images
    python -m torch.distributed.launch \
    --nproc_per_node=1 \
    --master_port 12345 inference.py \
    --config ./config/fashion_256.yaml \
    --name fashion_256 \
    --no_resume \
    --output_dir ./result/fashion_256/inference 

The result images are save in ./result/fashion_512/inference and ./result/fashion_256/inference.

Owner
Ren Yurui
Ren Yurui
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022