Kindle is an easy model build package for PyTorch.

Overview

Kindle - PyTorch no-code model builder

PyPI - Python Version PyTorch Version GitHub Workflow Status PyPI LGTM Alerts

Documentation
API reference

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file.

Kindle builds a model with no code but yaml file which its method is inspired from YOLOv5.

Contents

Installation

Install with pip

PyTorch is required prior to install. Please visit PyTorch installation guide to install.

You can install kindle by pip.

$ pip install kindle

Install from source

Please visit Install from source wiki page

For contributors

Please visit For contributors wiki page

Usage

Build a model

  1. Make model yaml file
input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Conv, [16, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  1. Build the model with kindle
from kindle import Model

model = Model("model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,232 |            Conv |        [16, 5, 1, 0] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 21 layers, 137,862 parameters, 137,862 gradients

AutoML with Kindle

  • Kindle offers the easiest way to build your own deep learning architecture. Beyond building a model, AutoML became easier with Kindle and Optuna or other optimization frameworks.
  • For further information, please refer to here

Supported modules

  • Detailed documents can be found here
Module Components Arguments
Conv Conv -> BatchNorm -> Activation [channel, kernel size, stride, padding, activation]
DWConv DWConv -> BatchNorm -> Activation [channel, kernel_size, stride, padding, activation]
Bottleneck Expansion ConvBNAct -> ConvBNAct [channel, shortcut, groups, expansion, activation]
AvgPool Average pooling [kernel_size, stride, padding]
MaxPool Max pooling [kernel_size, stride, padding]
GlobalAvgPool Global Average Pooling []
Flatten Flatten []
Concat Concatenation [dimension]
Linear Linear [channel, activation]
Add Add []

Custom module support

Custom module with yaml

You can make your own custom module with yaml file.

1. custom_module.yaml

args: [96, 32]

module:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [arg0, 1, 1]],
        [0, 1, Conv, [arg1, 3, 1]],
        [0, 1, Conv, [arg1, 5, 1]],
        [0, 1, Conv, [arg1, 7, 1]],
        [[1, 2, 3], 1, Concat, [1]],
        [[0, 4], 1, Add, []],
    ]
  • Arguments of yaml module can be defined as arg0, arg1 ...

2. model_with_custom_module.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, YamlModule, ["custom_module.yaml", 48, 16]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  • Note that argument of yaml module can be provided.

3. Build model

from kindle import Model

model = Model("model_with_custom_module.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |     10,832 |      YamlModule |    ['custom_module'] |                      [8 16 16] |    [24, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [24 16 16] |      [24, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [24 8 8] |          [1536] |
  5 |         -1 |   1 |    184,440 |          Linear |        [120, 'ReLU'] |                         [1536] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 36 layers, 206,902 parameters, 206,902 gradients

Custom module from source

You can make your own custom module from the source.

1. custom_module_model.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

custom_module_paths: ["tests.test_custom_module"]  # Paths to the custom modules of the source

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, MyConv, [6, 5, 3]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, MyConv, [16, 3, 5, SiLU]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]

2. Write PyTorch module and ModuleGenerator

tests/test_custom_module.py

from typing import List, Union

import numpy as np
import torch
from torch import nn

from kindle.generator import GeneratorAbstract
from kindle.torch_utils import Activation, autopad


class MyConv(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        n: int,
        activation: Union[str, None] = "ReLU",
    ) -> None:
        super().__init__()
        convs = []
        for i in range(n):
            convs.append(
                nn.Conv2d(
                    in_channels,
                    in_channels if (i + 1) != n else out_channels,
                    kernel_size,
                    padding=autopad(kernel_size),
                    bias=False,
                )
            )

        self.convs = nn.Sequential(*convs)
        self.batch_norm = nn.BatchNorm2d(out_channels)
        self.activation = Activation(activation)()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.activation(self.batch_norm(self.convs(x)))


class MyConvGenerator(GeneratorAbstract):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    @property
    def out_channel(self) -> int:
        return self._get_divisible_channel(self.args[0] * self.width_multiply)

    @property
    def in_channel(self) -> int:
        if isinstance(self.from_idx, list):
            raise Exception("from_idx can not be a list.")
        return self.in_channels[self.from_idx]

    @torch.no_grad()
    def compute_out_shape(self, size: np.ndarray, repeat: int = 1) -> List[int]:
        module = self(repeat=repeat)
        module.eval()
        module_out = module(torch.zeros([1, *list(size)]))
        return list(module_out.shape[-3:])

    def __call__(self, repeat: int = 1) -> nn.Module:
        args = [self.in_channel, self.out_channel, *self.args[1:]]
        if repeat > 1:
            module = [MyConv(*args) for _ in range(repeat)]
        else:
            module = MyConv(*args)

        return self._get_module(module)

3. Build a model

from kindle import Model

model = Model("custom_module_model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |      1,066 |          MyConv |            [6, 5, 3] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,488 |          MyConv |   [16, 3, 5, 'SiLU'] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 29 layers, 138,568 parameters, 138,568 gradients

Planned features

  • Custom module support
  • Custom module with yaml support
  • Use pre-trained model
  • More modules!
Owner
Jongkuk Lim
Deep Learning, Machine Learning, Data Science, Edge Computing, Fitness Enthusiast
Jongkuk Lim
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022