Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

Overview

ACSC

Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems.

pipeline

System Architecture

pipeline

1. Dependency

Tested with Ubuntu 16.04 64-bit and Ubuntu 18.04 64-bit.

  • ROS (tested with kinetic / melodic)

  • Eigen 3.2.5

  • PCL 1.8

  • python 2.X / 3.X

  • python-pcl

  • opencv-python (>= 4.0)

  • scipy

  • scikit-learn

  • transforms3d

  • pyyaml

  • mayavi (optional, for debug and visualization only)

2. Preparation

2.1 Download and installation

Use the following commands to download this repo.

Notice: the SUBMODULE should also be cloned.

git clone --recurse-submodules https://github.com/HViktorTsoi/ACSC

Compile and install the normal-diff segmentation extension.

cd /path/to/your/ACSC/segmentation

python setup.py install

We developed a practical ROS tool to achieve convenient calibration data collection, which can automatically organize the data into the format in 3.1. We strongly recommend that you use this tool to simplify the calibration process.

It's ok if you don't have ROS or don't use the provided tool, just manually process the images and point clouds into 3.1's format.

First enter the directory of the collection tool and run the following command:

cd /path/to/your/ACSC/ros/livox_calibration_ws

catkin_make

source ./devel/setup.zsh # or source ./devel/setup.sh

File explanation

  • ros/: The data collection tool directory (A ros workspace);

  • configs/: The directory used to store configuration files;

  • calibration.py: The main code for solving extrinsic parameters;

  • projection_validation.py: The code for visualization and verification of calibration results;

  • utils.py: utilities.

2.2 Preparing the calibration board

chessboard

We use a common checkerboard as the calibration target.

Notice, to ensure the success rate of calibration, it is best to meet the following requirement, when making and placing the calibration board:

  1. The size of the black/white square in the checkerboard should be >= 8cm;

  2. The checkerboard should be printed out on white paper, and pasted on a rectangular surface that will not deform;

  3. There should be no extra borders around the checkerboard;

  4. The checkerboard should be placed on a thin monopod, or suspended in the air with a thin wire. And during the calibration process, the support should be as stable as possible (Due to the need for point cloud integration);

  5. When placing the checkerboard on the base, the lower edge of the board should be parallel to the ground;

  6. There are not supposed to be obstructions within 3m of the radius of the calibration board.

Checkerboard placement

calibration board placement

Sensor setup

calibration board placement

3. Extrinsic Calibration

3.1 Data format

The images and LiDAR point clouds data need to be organized into the following format:

|- data_root
|-- images
|---- 000000.png
|---- 000001.png
|---- ......
|-- pcds
|---- 000000.npy
|---- 000001.npy
|---- ......
|-- distortion
|-- intrinsic

Among them, the images directory contains images containing checkerboard at different placements, recorded by the camera ;

The pcds directory contains point clouds corresponding to the images, each point cloud is a numpy array, with the shape of N x 4, and each row is the x, y, z and reflectance information of the point;

The distortion and intrinsic are the distortion parameters and intrinsic parameters of the camera respectively (will be described in detail in 3.3).

Sample Data

The sample solid state LiDAR point clouds, images and camera intrinsic data can be downloaded (375.6 MB) on:

Google Drive | BaiduPan (Code: fws7)

If you are testing with the provided sample data, you can directly jump to 3.4.

3.2 Data collection for your own sensors

First, make sure you can receive data topics from the the Livox LiDAR ( sensor_msgs.PointCloud2 ) and Camera ( sensor_msgs.Image );

Run the launch file of the data collection tool:

mkdir /tmp/data

cd /path/to/your/ACSC/ros/livox_calibration_ws
source ./devel/setup.zsh # or source ./devel/setup.sh

roslaunch calibration_data_collection lidar_camera_calibration.launch \                                                                                
config-path:=/home/hvt/Code/livox_camera_calibration/configs/data_collection.yaml \
image-topic:=/camera/image_raw \
lidar-topic:=/livox/lidar \
saving-path:=/tmp/data

Here, config-path is the path of the configuration file, usually we use configs/data_collection.yaml, and leave it as default;

The image-topic and lidar-topic are the topic names that we receive camera images and LiDAR point clouds, respectively;

The saving-path is the directory where the calibration data is temporarily stored.

After launching, you should be able to see the following two interfaces, which are the real-time camera image, and the birdeye projection of LiDAR.

If any of these two interfaces is not displayed properly, please check yourimage-topic and lidar-topic to see if the data can be received normally.

GUI

Place the checkerboard, observe the position of the checkerboard on the LiDAR birdeye view interface, to ensure that it is within the FOVof the LiDAR and the camera.

Then, press <Enter> to record the data; you need to wait for a few seconds, after the point cloud is collected and integrated, and the screen prompts that the data recording is complete, change the position of the checkerboard and continue to record the next set of data.

To ensure the robustness of the calibration results, the placement of the checkerboard should meet the following requirement:

  1. The checkerboard should be at least 2 meters away from the LiDAR;

  2. The checkerboard should be placed in at least 6 positions, which are the left, middle, and right sides of the short distance (about 4m), and the left, middle, and right sides of the long distance (8m);

  3. In each position, the calibration plate should have 2~3 different orientations.

When all calibration data is collected, type Ctrl+c in the terminal to close the calibration tool.

At this point, you should be able to see the newly generated data folder named with saving-path that we specified, where images are saved in images, and point clouds are saved in pcds:

collection_result

3.3 Camera intrinsic parameters

There are many tools for camera intrinsic calibration, here we recommend using the Camera Calibrator App in MATLAB, or the Camera Calibration Tools in ROS, to calibrate the camera intrinsic.

Write the camera intrinsic matrix

fx s x0
0 fy y0
0  0  1

into the intrinsic file under data-root. The format should be as shown below:

intrinsic

Write the camera distortion vector

k1  k2  p1  p2  k3

into the distortion file under data-root. The format should be as shown below:

dist

3.4 Extrinsic Calibration

When you have completed all the steps in 3.1 ~ 3.3, the data-root directory should contain the following content:

data

If any files are missing, please confirm whether all the steps in 3.1~3.3 are completed.

Modify the calibration configuration file in directory config, here we take sample.yaml as an example:

  1. Modify the root under data, to the root directory of data collected in 3.1~3.3. In our example, root should be /tmp/data/1595233229.25;

  2. Modify the chessboard parameter under data, change W and H to the number of inner corners of the checkerboard that you use (note that, it is not the number of squares, but the number of inner corners. For instance, for the checkerboard in 2.2, W= 7, H=5); Modify GRID_SIZE to the side length of a single little white / black square of the checkerboard (unit is m);

Then, run the extrinsic calibration code:

python calibration.py --config ./configs/sample.yaml

After calibration, the extrinsic parameter matrix will be written into the parameter/extrinsic file under data-root. data

4. Validation of result

After extrinsic calibration of step 3, run projection_projection.py to check whether the calibration is accurate:

python projection_validation.py --config ./configs/sample.yaml

It will display the point cloud reprojection to the image with solved extrinsic parameters, the RGB-colorized point cloud, and the visualization of the detected 3D corners reprojected to the image.

Note that, the 3D point cloud colorization results will only be displayed if mayavi is installed.

Reprojection of Livox Horizon Point Cloud

data

Reprojection Result of Livox Mid100 Point Cloud

data

Reprojection Result of Livox Mid40 Point Cloud

data

Colorized Point Cloud

data

Detected Corners

data data

Appendix

I. Tested sensor combinations

No. LiDAR Camera Chessboard Pattern
1 LIVOX Horizon MYNTEYE-D 120 7x5, 0.08m
2 LIVOX Horizon MYNTEYE-D 120 7x5, 0.15m
3 LIVOX Horizon AVT Mako G-158C 7x5, 0.08m
4 LIVOX Horizon Pointgrey CM3-U3-31S4C-CS 7x5, 0.08m
5 LIVOX Mid-40 MYNTEYE-D 120 7x5, 0.08m
6 LIVOX Mid-40 MYNTEYE-D 120 7x5, 0.15m
7 LIVOX Mid-40 AVT Mako G-158C 7x5, 0.08m
8 LIVOX Mid-40 Pointgrey CM3-U3-31S4C-CS 7x5, 0.08m
9 LIVOX Mid-100 MYNTEYE-D 120 7x5, 0.08m
10 LIVOX Mid-100 MYNTEYE-D 120 7x5, 0.15m
11 LIVOX Mid-100 AVT Mako G-158C 7x5, 0.08m
12 LIVOX Mid-100 Pointgrey CM3-U3-31S4C-CS 7x5, 0.08m
13 RoboSense ruby MYNTEYE-D 120 7x5, 0.08m
14 RoboSense ruby AVT Mako G-158C 7x5, 0.08m
15 RoboSense ruby Pointgrey CM3-U3-31S4C-CS 7x5, 0.08m
16 RoboSense RS32 MYNTEYE-D 120 7x5, 0.08m
17 RoboSense RS32 AVT Mako G-158C 7x5, 0.08m
18 RoboSense RS32 Pointgrey CM3-U3-31S4C-CS 7x5, 0.08m

II. Paper

ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

@misc{cui2020acsc,
      title={ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems}, 
      author={Jiahe Cui and Jianwei Niu and Zhenchao Ouyang and Yunxiang He and Dian Liu},
      year={2020},
      eprint={2011.08516},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

III. Known Issues

Updating...

Owner
KINO
Failed person.
KINO
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021