Code for our CVPR 2021 paper "MetaCam+DSCE"

Overview

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21)

Introduction

Code for our CVPR 2021 paper "MetaCam+DSCE".

Prerequisites

  • CUDA>=10.0

  • At least two 1080-Ti GPUs

  • Other necessary packages listed in requirements.txt

  • Training Data

    (Market-1501, DukeMTMC-reID and MSMT-17. You can download these datasets from Zhong's repo)

    Unzip all datasets and ensure the file structure is as follow:

    MetaCam_DSCE/data    
    │
    └───market1501 OR dukemtmc OR msmt17
         │   
         └───DukeMTMC-reID OR Market-1501-v15.09.15 OR MSMT17_V1
             │   
             └───bounding_box_train
             │   
             └───bounding_box_test
             | 
             └───query
             │   
             └───list_train.txt (only for MSMT-17)
             | 
             └───list_query.txt (only for MSMT-17)
             | 
             └───list_gallery.txt (only for MSMT-17)
             | 
             └───list_val.txt (only for MSMT-17)
    

Usage

See run.sh for details.

Acknowledgments

This repo borrows partially from MWNet (meta-learning), ECN (exemplar memory) and SpCL (faiss-based acceleration). If you find our code useful, please cite their papers.

@inproceedings{shu2019meta,
  title={Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting},
  author={Shu, Jun and Xie, Qi and Yi, Lixuan and Zhao, Qian and Zhou, Sanping and Xu, Zongben and Meng, Deyu},
  booktitle={NeurIPS},
  year={2019}
}
@inproceedings{zhong2019invariance,
  title={Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification},
  author={Zhong, Zhun and Zheng, Liang and Luo, Zhiming and Li, Shaozi and Yang, Yi},
  booktitle={CVPR},
  year={2019},
}
@inproceedings{ge2020selfpaced,
    title={Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID},
    author={Yixiao Ge and Feng Zhu and Dapeng Chen and Rui Zhao and Hongsheng Li},
    booktitle={NeurIPS},
    year={2020}
}

Citation

@inproceedings{yang2021meta,
  title={Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification},
  author={Yang, Fengxiang and Zhong, Zhun and Luo, Zhiming and Cai, Yuanzheng and Li, Shaozi and Nicu, Sebe},
  booktitle={CVPR},
  year={2021},
}

Resources

  1. Pre-trained MMT-500 models to reproduce Tab. 3 of our paper. BaiduNetDisk, Passwd: nsbv. Google Drive.

  2. Pedestrian images used to plot Fig.3 in our paper. BaiduNetDisk, Passwd: ydrf. Google Drive.

    Please download 'marCam' and 'dukeCam', put them under 'MetaCam_DSCE/data' and uncomment corresponding code. (e.g., L#87-89, L#163-168 of train_usl_knn_merge.py)

Contact Us

Email: [email protected]

Owner
FlyingRoastDuck
FlyingRoastDuck
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023