This repository contains the code, data, and models of the paper titled "XL-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages" published in Findings of the Association for Computational Linguistics: ACL 2021.

Overview

XL-Sum

This repository contains the code, data, and models of the paper titled "XL-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages" published in Findings of the Association for Computational Linguistics: ACL 2021.

Table of Contents

Datasets

Disclaimer: You must agree to the license and terms of use before using the dataset.

We are releasing two versions of the dataset: an older version that has been reported in the paper; and a newer version with another added language (Traditional Chinese), more data, better formatting, better extraction, larger evaluation splits, and deduplication. We recommend using the latter and thus have organized the repository with data counts and benchmarks of the newer version. The new version contains a total of 1.35 million article-summary pairs, making XL-Sum the largest text summarization dataset publicly available.

All dataset files are in .jsonl format i.e. one JSON per line. One example from the english dataset is given below in JSON format. The fields are self-explanatory.

{
  "id": "technology-17657859",
  "url": "https://www.bbc.com/news/technology-17657859",
  "title": "Yahoo files e-book advert system patent applications",
  "summary": "Yahoo has signalled it is investigating e-book adverts as a way to stimulate its earnings.",
  "text": "Yahoo's patents suggest users could weigh the type of ads against the sizes of discount before purchase. It says in two US patent applications that ads for digital book readers have been \"less than optimal\" to date. The filings suggest that users could be offered titles at a variety of prices depending on the ads' prominence They add that the products shown could be determined by the type of book being read, or even the contents of a specific chapter, phrase or word. The paperwork was published by the US Patent and Trademark Office late last week and relates to work carried out at the firm's headquarters in Sunnyvale, California. \"Greater levels of advertising, which may be more valuable to an advertiser and potentially more distracting to an e-book reader, may warrant higher discounts,\" it states. Free books It suggests users could be offered ads as hyperlinks based within the book's text, in-laid text or even \"dynamic content\" such as video. Another idea suggests boxes at the bottom of a page could trail later chapters or quotes saying \"brought to you by Company A\". It adds that the more willing the customer is to see the ads, the greater the potential discount. \"Higher frequencies... may even be great enough to allow the e-book to be obtained for free,\" it states. The authors write that the type of ad could influence the value of the discount, with \"lower class advertising... such as teeth whitener advertisements\" offering a cheaper price than \"high\" or \"middle class\" adverts, for things like pizza. The inventors also suggest that ads could be linked to the mood or emotional state the reader is in as a they progress through a title. For example, they say if characters fall in love or show affection during a chapter, then ads for flowers or entertainment could be triggered. The patents also suggest this could applied to children's books - giving the Tom Hanks animated film Polar Express as an example. It says a scene showing a waiter giving the protagonists hot drinks \"may be an excellent opportunity to show an advertisement for hot cocoa, or a branded chocolate bar\". Another example states: \"If the setting includes young characters, a Coke advertisement could be provided, inviting the reader to enjoy a glass of Coke with his book, and providing a graphic of a cool glass.\" It adds that such targeting could be further enhanced by taking account of previous titles the owner has bought. 'Advertising-free zone' At present, several Amazon and Kobo e-book readers offer full-screen adverts when the device is switched off and show smaller ads on their menu screens, but the main text of the titles remains free of marketing. Yahoo does not currently provide ads to these devices, and a move into the area could boost its shrinking revenues. However, Philip Jones, deputy editor of the Bookseller magazine, said that the internet firm might struggle to get some of its ideas adopted. \"This has been mooted before and was fairly well decried,\" he said. \"Perhaps in a limited context it could work if the merchandise was strongly related to the title and was kept away from the text. \"But readers - particularly parents - like the fact that reading is an advertising-free zone. Authors would also want something to say about ads interrupting their narrative flow.\""
}

Download the complete dataset. See the legacy section for the older version(s).

We used a 80%-10%-10% split for all languages with a few exceptions. English was split 93%-3.5%-3.5% for the evaluation set size to resemble that of CNN/DM and XSum; Scottish Gaelic, Kyrgyz and Sinhala had relatively fewer samples, their evaluation sets were increased to 500 samples for more reliable evaluation. Same articles were used for evaluation in the two variants of Chinese and Serbian to prevent data leakage in multilingual training. Individual dataset download links with train-dev-test example counts are given below:

Language ISO 639-1 Code BBC subdomain(s) Train Dev Test Total Link
Amharic am https://www.bbc.com/amharic 5761 719 719 7199 Download
Arabic ar https://www.bbc.com/arabic 37519 4689 4689 46897 Download
Azerbaijani az https://www.bbc.com/azeri 6478 809 809 8096 Download
Bengali bn https://www.bbc.com/bengali 8102 1012 1012 10126 Download
Burmese my https://www.bbc.com/burmese 4569 570 570 5709 Download
Chinese (Simplified) zh-CN https://www.bbc.com/ukchina/simp, https://www.bbc.com/zhongwen/simp 37362 4670 4670 46702 Download
Chinese (Traditional) zh-TW https://www.bbc.com/ukchina/trad, https://www.bbc.com/zhongwen/trad 37373 4670 4670 46713 Download
English en https://www.bbc.com/english, https://www.bbc.com/sinhala * 306522 11535 11535 329592 Download
French fr https://www.bbc.com/afrique 8697 1086 1086 10869 Download
Gujarati gu https://www.bbc.com/gujarati 9119 1139 1139 11397 Download
Hausa ha https://www.bbc.com/hausa 6418 802 802 8022 Download
Hindi hi https://www.bbc.com/hindi 70778 8847 8847 88472 Download
Igbo ig https://www.bbc.com/igbo 4183 522 522 5227 Download
Indonesian id https://www.bbc.com/indonesia 38242 4780 4780 47802 Download
Japanese ja https://www.bbc.com/japanese 7113 889 889 8891 Download
Kirundi rn https://www.bbc.com/gahuza 5746 718 718 7182 Download
Korean ko https://www.bbc.com/korean 4407 550 550 5507 Download
Kyrgyz ky https://www.bbc.com/kyrgyz 2266 500 500 3266 Download
Marathi mr https://www.bbc.com/marathi 10903 1362 1362 13627 Download
Nepali np https://www.bbc.com/nepali 5808 725 725 7258 Download
Oromo om https://www.bbc.com/afaanoromoo 6063 757 757 7577 Download
Pashto ps https://www.bbc.com/pashto 14353 1794 1794 17941 Download
Persian fa https://www.bbc.com/persian 47251 5906 5906 59063 Download
Pidgin** n/a https://www.bbc.com/pidgin 9208 1151 1151 11510 Download
Portuguese pt https://www.bbc.com/portuguese 57402 7175 7175 71752 Download
Punjabi pa https://www.bbc.com/punjabi 8215 1026 1026 10267 Download
Russian ru https://www.bbc.com/russian, https://www.bbc.com/ukrainian * 62243 7780 7780 77803 Download
Scottish Gaelic gd https://www.bbc.com/naidheachdan 1313 500 500 2313 Download
Serbian (Cyrillic) sr https://www.bbc.com/serbian/cyr 7275 909 909 9093 Download
Serbian (Latin) sr https://www.bbc.com/serbian/lat 7276 909 909 9094 Download
Sinhala si https://www.bbc.com/sinhala 3249 500 500 4249 Download
Somali so https://www.bbc.com/somali 5962 745 745 7452 Download
Spanish es https://www.bbc.com/mundo 38110 4763 4763 47636 Download
Swahili sw https://www.bbc.com/swahili 7898 987 987 9872 Download
Tamil ta https://www.bbc.com/tamil 16222 2027 2027 20276 Download
Telugu te https://www.bbc.com/telugu 10421 1302 1302 13025 Download
Thai th https://www.bbc.com/thai 6616 826 826 8268 Download
Tigrinya ti https://www.bbc.com/tigrinya 5451 681 681 6813 Download
Turkish tr https://www.bbc.com/turkce 27176 3397 3397 33970 Download
Ukrainian uk https://www.bbc.com/ukrainian 43201 5399 5399 53999 Download
Urdu ur https://www.bbc.com/urdu 67665 8458 8458 84581 Download
Uzbek uz https://www.bbc.com/uzbek 4728 590 590 5908 Download
Vietnamese vi https://www.bbc.com/vietnamese 32111 4013 4013 40137 Download
Welsh cy https://www.bbc.com/cymrufyw 9732 1216 1216 12164 Download
Yoruba yo https://www.bbc.com/yoruba 6350 793 793 7936 Download

* A lot of articles in BBC Sinhala and BBC Ukrainian were written in English and Russian respectively. They were identified using Fasttext and moved accordingly.

** West African Pidgin English

Models

We are releasing a multilingual model checkpoint trained for 50k steps on the new data. To use this model for evaluation/inference refer to Training & Evaluation.

Benchmarks

Multilingual model scores on test sets are given below. We are also releasing the model-generated outputs for future analysis.

Language ROUGE-1 / ROUGE-2 / ROUGE-L
Amharic 20.0485 / 7.4111 / 18.0753
Arabic 34.9107 / 14.7937 / 29.1623
Azerbaijani 21.4227 / 9.5214 / 19.3331
Bengali 29.5653 / 12.1095 / 25.1315
Burmese 15.9626 / 5.1477 / 14.1819
Chinese (Simplified) 39.4071 / 17.7913 / 33.406
Chinese (Traditional) 37.1866 / 17.1432 / 31.6184
English 37.601 / 15.1536 / 29.8817
French 35.3398 / 16.1739 / 28.2041
Gujarati 21.9619 / 7.7417 / 19.86
Hausa 39.4375 / 17.6786 / 31.6667
Hindi 38.5882 / 16.8802 / 32.0132
Igbo 31.6148 / 10.1605 / 24.5309
Indonesian 37.0049 / 17.0181 / 30.7561
Japanese 48.1544 / 23.8482 / 37.3636
Kirundi 31.9907 / 14.3685 / 25.8305
Korean 23.6745 / 11.4478 / 22.3619
Kyrgyz 18.3751 / 7.9608 / 16.5033
Marathi 22.0141 / 9.5439 / 19.9208
Nepali 26.6547 / 10.2479 / 24.2847
Oromo 18.7025 / 6.1694 / 16.1862
Pashto 38.4743 / 15.5475 / 31.9065
Persian 36.9425 / 16.1934 / 30.0701
Pidgin 37.9574 / 15.1234 / 29.872
Portuguese 37.1676 / 15.9022 / 28.5586
Punjabi 30.6973 / 12.2058 / 25.515
Russian 32.2164 / 13.6386 / 26.1689
Scottish Gaelic 29.0231 / 10.9893 / 22.8814
Serbian (Cyrillic) 23.7841 / 7.9816 / 20.1379
Serbian (Latin) 21.6443 / 6.6573 / 18.2336
Sinhala 27.2901 / 13.3815 / 23.4699
Somali 31.5563 / 11.5818 / 24.2232
Spanish 31.5071 / 11.8767 / 24.0746
Swahili 37.6673 / 17.8534 / 30.9146
Tamil 24.3326 / 11.0553 / 22.0741
Telugu 19.8571 / 7.0337 / 17.6101
Thai 37.3951 / 17.275 / 28.8796
Tigrinya 25.321 / 8.0157 / 21.1729
Turkish 32.9304 / 15.5709 / 29.2622
Ukrainian 23.9908 / 10.1431 / 20.9199
Urdu 39.5579 / 18.3733 / 32.8442
Uzbek 16.8281 / 6.3406 / 15.4055
Vietnamese 32.8826 / 16.2247 / 26.0844
Welsh 32.6599 / 11.596 / 26.1164
Yoruba 31.6595 / 11.6599 / 25.0898

Multilingual ROUGE

Training & Evaluation

License

Contents of this repository are restricted to only non-commercial research purposes under the Creative Commons Attribution 4.0 International License. Copyright of the dataset contents belongs to the original copyright holders.

Citation

If you use any of the datasets, models or code modules, please cite the following paper:

@inproceedings{hasan-etal-2021-xlsum,
    title = "XL-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages",
    author = "Hasan, Tahmid  and
      Bhattacharjee, Abhik  and
      Islam, Md Saiful and
      Samin, Kazi  and
      Li, Yuan-Fang and
      Kang, Yong-Bin and 
      Rahman, M. Sohel  and
      Shahriyar, Rifat",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2021",
    month = "August",
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/2106.13822"
}
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022