Distributionally robust neural networks for group shifts

Overview

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization

This code implements the group DRO algorithm from the following paper:

Shiori Sagawa*, Pang Wei Koh*, Tatsunori Hashimoto, and Percy Liang

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization

The experiments use the following datasets:

For an executable, Dockerized version of the experiments in these paper, please see our Codalab worksheet.

Abstract

Overparameterized neural networks can be highly accurate on average on an i.i.d. test set yet consistently fail on atypical groups of the data (e.g., by learning spurious correlations that hold on average but not in such groups). Distributionally robust optimization (DRO) allows us to learn models that instead minimize the worst-case training loss over a set of pre-defined groups. However, we find that naively applying group DRO to overparameterized neural networks fails: these models can perfectly fit the training data, and any model with vanishing average training loss also already has vanishing worst-case training loss. Instead, their poor worst-case performance arises from poor generalization on some groups. By coupling group DRO models with increased regularization---stronger-than-typical L2 regularization or early stopping---we achieve substantially higher worst-group accuracies, with 10-40 percentage point improvements on a natural language inference task and two image tasks, while maintaining high average accuracies. Our results suggest that regularization is critical for worst-group generalization in the overparameterized regime, even if it is not needed for average generalization. Finally, we introduce and give convergence guarantees for a stochastic optimizer for the group DRO setting, underpinning the empirical study above.

Prerequisites

  • python 3.6.8
  • matplotlib 3.0.3
  • numpy 1.16.2
  • pandas 0.24.2
  • pillow 5.4.1
  • pytorch 1.1.0
  • pytorch_transformers 1.2.0
  • torchvision 0.5.0a0+19315e3
  • tqdm 4.32.2

Datasets and code

To run our code, you will need to change the root_dir variable in data/data.py. The main point of entry to the code is run_expt.py. Below, we provide sample commands for each dataset.

CelebA

Our code expects the following files/folders in the [root_dir]/celebA directory:

  • data/list_eval_partition.csv
  • data/list_attr_celeba.csv
  • data/img_align_celeba/

You can download these dataset files from this Kaggle link. The original dataset, due to Liu et al. (2015), can be found here. The version of the CelebA dataset that we use in the paper (with the (hair, gender) groups) can also be accessed through the WILDS package, which will automatically download the dataset.

A sample command to run group DRO on CelebA is: python run_expt.py -s confounder -d CelebA -t Blond_Hair -c Male --lr 0.0001 --batch_size 128 --weight_decay 0.0001 --model resnet50 --n_epochs 50 --reweight_groups --robust --gamma 0.1 --generalization_adjustment 0

Waterbirds

The Waterbirds dataset is constructed by cropping out birds from photos in the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) and transferring them onto backgrounds from the Places dataset (Zhou et al., 2017).

Our code expects the following files/folders in the [root_dir]/cub directory:

  • data/waterbird_complete95_forest2water2/

You can download a tarball of this dataset here. The Waterbirds dataset can also be accessed through the WILDS package, which will automatically download the dataset.

A sample command to run group DRO on Waterbirds is: python run_expt.py -s confounder -d CUB -t waterbird_complete95 -c forest2water2 --lr 0.001 --batch_size 128 --weight_decay 0.0001 --model resnet50 --n_epochs 300 --reweight_groups --robust --gamma 0.1 --generalization_adjustment 0

Note that compared to the training set, the validation and test sets are constructed with different proportions of each group. We describe this in more detail in Appendix C.1 of our paper, which we reproduce here for convenience:

We use the official train-test split of the CUB dataset, randomly choosing 20% of the training data to serve as a validation set. For the validation and test sets, we allocate distribute landbirds and waterbirds equally to land and water backgrounds (i.e., there are the same number of landbirds on land vs. water backgrounds, and separately, the same number of waterbirds on land vs. water backgrounds). This allows us to more accurately measure the performance of the rare groups, and it is particularly important for the Waterbirds dataset because of its relatively small size; otherwise, the smaller groups (waterbirds on land and landbirds on water) would have too few samples to accurately estimate performance on. We note that we can only do this for the Waterbirds dataset because we control the generation process; for the other datasets, we cannot generate more samples from the rare groups.

In a typical application, the validation set might be constructed by randomly dividing up the available training data. We emphasize that this is not the case here: the training set is skewed, whereas the validation set is more balanced. We followed this construction so that we could better compare ERM vs. reweighting vs. group DRO techniques using a stable set of hyperparameters. In practice, if the validation set were also skewed, we might expect hyperparameter tuning based on worst-group accuracy to be more challenging and noisy.

Due to the above procedure, when reporting average test accuracy in our experiments, we calculate the average test accuracy over each group and then report a weighted average, with weights corresponding to the relative proportion of each group in the (skewed) training dataset.

If you'd like to generate variants of this dataset, we have included the script we used to generate this dataset (from the CUB and Places datasets) in dataset_scripts/generate_waterbirds.py. Note that running this script will not create the exact dataset we provide above, due to random seed differences. You will need to download the CUB dataset as well as the Places dataset. We use the high-resolution training images (MD5: 67e186b496a84c929568076ed01a8aa1) from Places. Once you have downloaded and extracted these datasets, edit the corresponding paths in generate_waterbirds.py.

MultiNLI with annotated negations

Our code expects the following files/folders in the [root_dir]/multinli directory:

  • data/metadata_random.csv
  • glue_data/MNLI/cached_dev_bert-base-uncased_128_mnli
  • glue_data/MNLI/cached_dev_bert-base-uncased_128_mnli-mm
  • glue_data/MNLI/cached_train_bert-base-uncased_128_mnli

We have included the metadata file in dataset_metadata/multinli in this repository. The metadata file records whether each example belongs to the train/val/test dataset as well as whether it contains a negation word.

The glue_data/MNLI files are generated by the huggingface Transformers library and can be downloaded here.

A sample command to run group DRO on MultiNLI is: python run_expt.py -s confounder -d MultiNLI -t gold_label_random -c sentence2_has_negation --lr 2e-05 --batch_size 32 --weight_decay 0 --model bert --n_epochs 3 --reweight_groups --robust --generalization_adjustment 0

We created our own train/val/test split of the MultiNLI dataset, as described in Appendix C.1 of our paper:

The standard MultiNLI train-test split allocates most examples (approximately 90%) to the training set, with another 5% as a publicly-available development set and the last 5% as a held-out test set that is only accessible through online competition leaderboards (Williams et al., 2018). To accurately estimate performance on rare groups in the validation and test sets, we combine the training set and development set and then randomly resplit it to a 50-20-30 train-val-test split that allocates more examples to the validation and test sets than the standard split.

If you'd like to modify the metadata file (e.g., considering other confounders than the presence of negation words), we have included the script we used to generate the metadata file in dataset_scripts/generate_multinli.py. Note that running this script will not create the exact dataset we provide above, due to random seed differences. You will need to download the MultiNLI dataset and edit the paths in that script accordingly.

A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022