Distributed Arcface Training in Pytorch

Related tags

Deep LearningMaske_FR
Overview

Distributed Arcface Training in Pytorch

This is a deep learning library that makes face recognition efficient, and effective, which can train tens of millions identity on a single server.

Requirements

How to Training

To train a model, run train.py with the path to the configs:

1. Single node, 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r50

2. Multiple nodes, each node 8 GPUs:

Node 0:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50

Node 1:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50

3.Training resnet2060 with 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r2060.py

Model Zoo

  • The models are available for non-commercial research purposes only.
  • All models can be found in here.
  • Baidu Yun Pan: e8pw
  • onedrive

Performance on ICCV2021-MFR

ICCV2021-MFR testset consists of non-celebrities so we can ensure that it has very few overlap with public available face recognition training set, such as MS1M and CASIA as they mostly collected from online celebrities. As the result, we can evaluate the FAIR performance for different algorithms.

For ICCV2021-MFR-ALL set, TAR is measured on all-to-all 1:1 protocal, with FAR less than 0.000001(e-6). The globalised multi-racial testset contains 242,143 identities and 1,624,305 images.

For ICCV2021-MFR-MASK set, TAR is measured on mask-to-nonmask 1:1 protocal, with FAR less than 0.0001(e-4). Mask testset contains 6,964 identities, 6,964 masked images and 13,928 non-masked images. There are totally 13,928 positive pairs and 96,983,824 negative pairs.

Datasets backbone Training throughout Size / MB ICCV2021-MFR-MASK ICCV2021-MFR-ALL
MS1MV3 r18 - 91 47.85 68.33
Glint360k r18 8536 91 53.32 72.07
MS1MV3 r34 - 130 58.72 77.36
Glint360k r34 6344 130 65.10 83.02
MS1MV3 r50 5500 166 63.85 80.53
Glint360k r50 5136 166 70.23 87.08
MS1MV3 r100 - 248 69.09 84.31
Glint360k r100 3332 248 75.57 90.66
MS1MV3 mobilefacenet 12185 7.8 41.52 65.26
Glint360k mobilefacenet 11197 7.8 44.52 66.48

Performance on IJB-C and Verification Datasets

Datasets backbone IJBC(1e-05) IJBC(1e-04) agedb30 cfp_fp lfw log
MS1MV3 r18 92.07 94.66 97.77 97.73 99.77 log
MS1MV3 r34 94.10 95.90 98.10 98.67 99.80 log
MS1MV3 r50 94.79 96.46 98.35 98.96 99.83 log
MS1MV3 r100 95.31 96.81 98.48 99.06 99.85 log
MS1MV3 r2060 95.34 97.11 98.67 99.24 99.87 log
Glint360k r18-0.1 93.16 95.33 97.72 97.73 99.77 log
Glint360k r34-0.1 95.16 96.56 98.33 98.78 99.82 log
Glint360k r50-0.1 95.61 96.97 98.38 99.20 99.83 log
Glint360k r100-0.1 95.88 97.32 98.48 99.29 99.82 log

Speed Benchmark

Arcface Torch can train large-scale face recognition training set efficiently and quickly. When the number of classes in training sets is greater than 300K and the training is sufficient, partial fc sampling strategy will get same accuracy with several times faster training performance and smaller GPU memory. Partial FC is a sparse variant of the model parallel architecture for large sacle face recognition. Partial FC use a sparse softmax, where each batch dynamicly sample a subset of class centers for training. In each iteration, only a sparse part of the parameters will be updated, which can reduce a lot of GPU memory and calculations. With Partial FC, we can scale trainset of 29 millions identities, the largest to date. Partial FC also supports multi-machine distributed training and mixed precision training.

Image text

More details see speed_benchmark.md in docs.

1. Training speed of different parallel methods (samples / second), Tesla V100 32GB * 8. (Larger is better)

- means training failed because of gpu memory limitations.

Number of Identities in Dataset Data Parallel Model Parallel Partial FC 0.1
125000 4681 4824 5004
1400000 1672 3043 4738
5500000 - 1389 3975
8000000 - - 3565
16000000 - - 2679
29000000 - - 1855

2. GPU memory cost of different parallel methods (MB per GPU), Tesla V100 32GB * 8. (Smaller is better)

Number of Identities in Dataset Data Parallel Model Parallel Partial FC 0.1
125000 7358 5306 4868
1400000 32252 11178 6056
5500000 - 32188 9854
8000000 - - 12310
16000000 - - 19950
29000000 - - 32324

Evaluation ICCV2021-MFR and IJB-C

More details see eval.md in docs.

Test

We tested many versions of PyTorch. Please create an issue if you are having trouble.

  • torch 1.6.0
  • torch 1.7.1
  • torch 1.8.0
  • torch 1.9.0

Citation

@inproceedings{deng2019arcface,
  title={Arcface: Additive angular margin loss for deep face recognition},
  author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4690--4699},
  year={2019}
}
@inproceedings{an2020partical_fc,
  title={Partial FC: Training 10 Million Identities on a Single Machine},
  author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
  Zhang, Debing and Fu Ying},
  booktitle={Arxiv 2010.05222},
  year={2020}
}
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023