Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Overview

Python-for-Epidemiologists

Join the chat at https://gitter.im/zEpid/community DOI

This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are hosted here. For more information on zEpid, see GitHub or ReadTheDocs.

The directory of this guide is

  1. Python Basics
  2. Basics of pandas (data management library)
  3. Epidemiology analyses in Python
    1. Basics
    2. Missing data
    3. Causal inference
      1. Time-fixed treatments
      2. Time-varying treatments
    4. Sensitivity analyses

Required packages for tutorial

To complete the tutorial, user must have the following packages installed: numpy, pandas, zepid, matplotlib, statsmodels, lifelines, and sklearn

IDE (Integrated Development Environment)

No IDE is required to complete the tutorial. All files are available in ipynb also known as jupyter notebooks. Code can be either downloaded or copied from the notebooks.

Here are some IDEs I have used in the past (and what I believe to be their advantages and disadvantages

Rodeo

This is the IDE I used for a long time. It is set up like RStudio

Advantages:

Basically RStudio but for Python, decent interface, easy to run line-by-line, easy to visualize plots (although it encourage bad habits)

Disadvantages:

Does not have all the features of RStudio (will delete changes if closed without saving), sucks up a lot of memory, sometimes the auto-complete would stop working if I hit more than 300+ lines of code, the environment tab is not great (don't expect it to open anything like RStudio)

Aside: their website has great tutorials how to run some basic stuff in Python if you are new to analysis in Python https://rodeo.yhat.com/

jupyter notebooks

Designed to be like a lab notebook, or like R markdown. Supports a pseudo-line-by-line concept Good for writing, since it allows for MarkDown. While I know a lot of people like jupyter, I only really use it for examples of code, not my personal programming. I never liked how it had to open via a Web Browser. I would rather have it be separate program. However, all guides were made using this IDE

PyCharm

This is the IDE I currently use

Advantages:

Easily set up virtual environments, interacts natively with Git, supports different file formats with plug-ins (e.g. .md), enforces certain coding conventions, better debug code features, organization of files under the project tab are convenient

Disadvantages:

Not great for running line-by-line code (it can do it, just not as elegantly), little more hardcore (I wouldn't really consider it a beginner's IDE. It requires some knowledge of set-up of Python)

IDLE

Ships with the basic Python 3.x installation. It is very basic and does not support line-by-line. Wouldn't recommend unless you are just starting with Python and don't want to commit to an IDE yet

Spyder

Ships with conda. Not bad but I didn't use it that much (I couldn't get the hang of it). Similarly it is an RStudio copy. Can't say too much since I haven't used it extensively

Basic Introduction to Python

If you have never used Python before, I have created some introductory materials to Python and the data management library I use, pandas. These are basic guides, but they also point to other resources. Please READ ALL OF THE BELOW BEFORE PROCEEDING.

Installing Python

To install, Python 3.x, we can download it directly from: https://www.python.org/downloads/

The installer provides an option to add Python3 to PATH, it is highly recommended you do this, since it allows you to avoid having to do it manually

Open Command Prompt / Terminal. When opened, type python and this should open Python in the same window. From here, you can quit by typing 'quit()' or closing the window. If this does NOT work, make sure your environmental variable was created properly

Installing Python Packages

Packages are what stores Python functions that we will use. These packages are contributed by various members of the community (including me)) and there is a wide array. To be able to download packages, we need to make sure we have an environmental variable created for python. We will discuss how to install packages

Python 3.x conveniently comes with a package manager. Basically it stores all the packages and we can use it to download new ones or update already downloaded ones.

To download a new package: Open Command Prompt/Terminal and use the following code (we will be installing pandas)

pip install pandas

To update a Python package, type the following command into Command Prompt. For example, we will update our pandas package

pip install pandas --upgrade

That concludes the basics. Please review parts 1 and 2 of the tutorials next

Comments
  • Cochran-Mantel-Haenszel

    Cochran-Mantel-Haenszel

    Thank you @pzivich for this amazing resource. Having the Hernan/Robbins causal model code in python is super helpful... g-estimation!

    I have a request... do you have a Cochran-Mantel-Haenszel script? If you get the chance, please, it would be useful to us to have in this repo. Thank you in advance!

    opened by opioiddatalab 2
  • Slight changes in Incidence Rate Ratio

    Slight changes in Incidence Rate Ratio

    Incidence Ratio Rate Paragraph

    • Fixed repetition
    • T1 & T0 are defined the same way. I believe that T0 is the person-time contributed by people NOT treated with ART
    opened by jaimiles23 0
  • Updates for v0.8.0

    Updates for v0.8.0

    Checklist for various notebooks to update with v0.8.0 release (hasn't released yet)

    • [x] IPTW update. Lots of major changes, so notebook needs to be completely overhauled

    • [x] Demonstrate new diagnostic functions for IPTW, g-formula, AIPW, TMLE

    • [x] Demonstrate g-bound argument

    • [x] Remove TMLE machine learning custom models. This is being removed in favor of cross-fitting. Can leave how to apply for now, but add the warning and mention will be cut in v0.9.0

    opened by pzivich 0
  • Notebooks not rendering in GitHub

    Notebooks not rendering in GitHub

    Sometimes GitHub has trouble rendering the notebooks. AFAIK the rendering system is behind the scenes at GitHub. Others have this same problem across repos and it sometimes occurs to me as well.

    If the notebook won't render in GitHub, you can copy the URL to the notebook you want to view and use the following site to view the notebook: https://nbviewer.jupyter.org/

    opened by pzivich 0
  • Replicate

    Replicate "Causal Inference"

    Issue to track progress on implementation of Hernan and Robins "Causal Inference" chapters

    • [x] Chapter 12: Inverse probability weights

    • [x] Chapter 13: Parametric g-formula

    • [x] Chapter 14: G-estimation of structural nested models

    • [x] ~Chapter 16: G-estimation for IV analysis~

    • [ ] Chapter 17: Causal survival analysis

    • [ ] Part III: Time-varying treatments

    ~G-estimation is not currently implemented. I will need to implement these before chapter 14 can be done.~

    Currently there are no plans to replicate Chapter 15 (propensity scores and regression) or Chapter 16 (instrumental variables) since the first method does not require zEpid and I am unfamiliar with the second. Maybe instrumental variables will be added in the future?

    For Chapter 16, I am considering demonstrating the usage of g-estimation instead of two-stage least-squares. Specifically, using the same data as done in Chapter 16 but following Technical Point 16.3

    enhancement 
    opened by pzivich 0
  • Tutorials

    Tutorials

    On the website, create quick tutorials demonstrating each of the implemented estimators, descriptions of how they work, and why you might want to use them. Might be more digestible than the current docs (also better justify why to choose one over the other)

    Reference to base on https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html https://github.com/CamDavidsonPilon/lifelines/blob/master/docs/jupyter_notebooks/Proportional%20hazard%20assumption.ipynb

    TODO

    • [x] Basic measures

    • [x] splines

    • [x] IPTW: time-fixed treatment

    • [ ] IPTW: stochastic treatment

    • [ ] IPTW: time-varying treatment

    • [x] IPCW

    • [x] IPMW: single variable

    • [ ] IPMW: monotone

    • [ ] IPMW: nonmonotone (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, binary outcome

    • [x] G-formula: time-fixed categorical treatment, binary outcome

    • [ ] G-formula: time-fixed continuous treatment, binary outcome (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, continuous outcome

    • [x] G-formula: Monte Carlo

    • [x] G-formula: Iterative Conditional

    • [x] G-estimation of SNM

    • [x] AIPTW

    • [ ] AIPMW

    • [x] TMLE

    • [x] TMLE: stochastic treatment

    • [ ] LTMLE (to add after implemented)

    • [x] Quantitative bias analysis

    • [x] Functional form assessment

    • [x] Generalizability

    • [ ] Transportability (IPSW, g-transport, AIPSW)

    • [x] Monte Carlo g-formula by-hand (helps to explain underlying process)

    opened by pzivich 1
Releases(v0.8.0)
Owner
Paul Zivich
Epidemiology post-doc working in epidemiologic methods and infectious diseases.
Paul Zivich
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022