The official repository for Deep Image Matting with Flexible Guidance Input

Overview

FGI-Matting

The official repository for Deep Image Matting with Flexible Guidance Input.

Paper: https://arxiv.org/abs/2110.10898

image

all

Requirements

  • easydict
  • numpy
  • opencv-python
  • Pillow
  • PyQt5
  • scikit-image
  • scipy
  • toml
  • torch>=1.5.0
  • torchvision

Models and supplementary data for DIM test set(Composition-1k) and Distinctions-646 test set

Google drive: https://drive.google.com/drive/folders/13qnlXUSKS5HfkfvzdMKAv7FvJ6YV_wPK?usp=sharing
百度网盘: https://pan.baidu.com/s/1ZYcbwyCIrL6G9t7pkCIBYw 提取码: zjtj

  • Weight_DIM.pth The model trained with Adobe matting dataset.

  • Weight_D646.pth The model trained with Distincions-646 dataset.

  • DIM_test_supp_data.zip Scribblemaps and Clickmaps for DIM test set.

  • D-646_test_supp_data.zip Scribblemaps and Clickmaps for Distinctions-646 test set.

Place Weight_DIM.pth and Weight_D646.pth in ./checkpoints.
Edit ./config/FGI_config to modify the path of the testset and choose the checkpoint name.

Test on DIM test set(Composition-1k)

Methods SAD MSE Grad Conn
Trimap test 30.19 0.0061 13.07 26.66
Scribblemap test 32.86 0.0090 14.18 29.09
Clickmap test 34.67 0.0112 15.45 30.96
No guidance test 36.36 0.0141 15.23 32.76

"checkpoint" in ./config/FGI_config.toml should be "Weight_DIM".
bash test.sh
Modify "guidancemap_phase" in ./config/FGI_config.toml to test on trimap, scribblemap, clickmap and No_guidance.
For further test, please use the code in ./DIM_evaluation_code and the predicted alpha mattes in ./alpha_pred.

Test on Distinctions-646 test set(Not appear in the paper)

Methods SAD MSE Grad Conn
Trimap test 28.90 0.0105 24.67 27.40
Scribblemap test 33.22 0.0131 26.93 31.38
Clickmap test 34.97 0.0146 27.60 33.11
No guidance test 36.83 0.0156 28.28 34.90

"checkpoint" in ./config/FGI_config.toml should be "Weight_D646".
bash test.sh
Modify "guidancemap_phase" in ./config/FGI_config.toml to test on trimap, scribblemap, clickmap and No_guidance.
For further test, please use the code in ./DIM_evaluation_code and the predicted alpha mattes in ./alpha_pred.

The QT Demo

Copy one of the pth file and rename it "Weight_qt_in_use.pth", also place it in ./checkpoints.
Run test_one_img_qt.py. Try images in ./testimg. It will use GPU if avaliable, otherwise it will use CPU.

demo

I recommend to use the one trained on DIM dataset.
Have fun :D

Acknowledgment

GCA-Matting: https://github.com/Yaoyi-Li/GCA-Matting

Owner
Hang Cheng
Hang Cheng
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022