REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

Overview

What is MUSE?

MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE).
MUSE/USE models encode sentences into embedding vectors of fixed size.

MUSE paper: link.
USE paper: link.
USE Visually Explainer article: link.

What is MUSE as Service?

MUSE as Service is REST API for sentence tokenization and embedding using MUSE.
It is written on flask + gunicorn.
You can configure gunicorn with gunicorn.conf.py file.

Installation

# clone repo
git clone https://github.com/dayyass/muse_as_service.git

# install dependencies
cd muse_as_service
pip install -r requirements.txt

Run Service

To launch a service use a docker container (either locally or on a server):

docker build -t muse_as_service .
docker run -d -p 5000:5000 --name muse_as_service muse_as_service

NOTE: you can launch a service without docker using gunicorn: sh ./gunicorn.sh, or flask: python app.py, but it is preferable to launch the service inside the docker container.
NOTE: instead of building a docker image, you can pull it from Docker Hub:
docker pull dayyass/muse_as_service

Usage

After you launch the service, you can tokenize and embed any {sentence} using GET requests ({ip} is the address where the service was launched):

http://{ip}:5000/tokenize?sentence={sentence}
http://{ip}:5000/embed?sentence={sentence}

You can use python requests library to work with GET requests (example notebook):

import numpy as np
import requests

ip = "localhost"
port = 5000

sentence = "This is sentence example."

# tokenizer
response = requests.get(
    url=f"http://{ip}:{port}/tokenize",
    params={"sentence": f"{sentence}"},
)
tokenized_sentence = response.json()["content"]

# embedder
response = requests.get(
    url=f"http://{ip}:{port}/embed",
    params={"sentence": f"{sentence}"},
)
embedding = np.array(response.json()["content"][0])

# results
print(tokenized_sentence)  # ['▁This', '▁is', '▁sentence', '▁example', '.']
print(embedding.shape)  # (512,)

But it is better to use the built-in client MUSEClient for sentence tokenization and embedding, that wraps the functionality of the requests library and provides the user with a simpler interface (example notebook):

from muse_as_service import MUSEClient

ip = "localhost"
port = 5000

sentence = "This is sentence example."

# init client
client = MUSEClient(
    ip=ip,
    port=port,
)

# tokenizer
tokenized_sentence = client.tokenize(sentence)

# embedder
embedding = client.embed(sentence)

# results
print(tokenized_sentence)  # ['▁This', '▁is', '▁sentence', '▁example', '.']
print(embedding.shape)  # (512,)

Citation

If you use muse_as_service in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{dayyass_muse_as_service,
    author = {El-Ayyass, Dani},
    title = {Multilingual Universal Sentence Encoder REST API},
    howpublished = {\url{https://github.com/dayyass/muse_as_service}},
    year = {2021},
}
You might also like...
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Some embedding layer implementation using ivy library
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Comments
  • How to change batch size

    How to change batch size

    I got the following OOM message: Error on request: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\werkzeug\serving.py", line 324, in run_wsgi execute(self.server.app) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\werkzeug\serving.py", line 313, in execute application_iter = app(environ, start_response) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2091, in call return self.wsgi_app(environ, start_response) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2076, in wsgi_app response = self.handle_exception(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 271, in error_router return original_handler(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2073, in wsgi_app response = self.full_dispatch_request() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1518, in full_dispatch_request rv = self.handle_user_exception(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 271, in error_router return original_handler(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1516, in full_dispatch_request rv = self.dispatch_request() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1502, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 467, in wrapper resp = resource(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\views.py", line 84, in view return current_app.ensure_sync(self.dispatch_request)(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 582, in dispatch_request resp = meth(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_jwt_extended\view_decorators.py", line 127, in decorator return current_app.ensure_sync(fn)(*args, **kwargs) File "F:\repos3\muse-as-service\muse-as-service\src\muse_as_service\endpoints.py", line 56, in get embedding = self.embedder(args["sentence"]).numpy().tolist() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\keras\engine\base_layer.py", line 1037, in call outputs = call_fn(inputs, *args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow_hub\keras_layer.py", line 229, in call result = f() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\saved_model\load.py", line 664, in _call_attribute return instance.call(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\def_function.py", line 885, in call result = self._call(*args, **kwds) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\def_function.py", line 957, in _call filtered_flat_args, self._concrete_stateful_fn.captured_inputs) # pylint: disable=protected-access File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\function.py", line 1964, in _call_flat ctx, args, cancellation_manager=cancellation_manager)) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\function.py", line 596, in call ctx=ctx) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute inputs, attrs, num_outputs) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[32851,782,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/SparseTransformerEncode/Layer_0/SelfAttention/SparseMultiheadAttention/ComputeQKV/ScatterNd}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

         [[StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/layer_prepostprocess/layer_norm/add_1/_128]]
    

    Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

    (1) Resource exhausted: OOM when allocating tensor with shape[32851,782,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/SparseTransformerEncode/Layer_0/SelfAttention/SparseMultiheadAttention/ComputeQKV/ScatterNd}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

    question 
    opened by jiangweiatgithub 3
  • slow response from service

    slow response from service

    I have been comparing the efficency between the muse as service and the original "hub.load" method, and see a noticeable slow reponse in the former, both running separately on my Quadro RTX 5000. Can I safely assume this slowness is due to the very nature of the web service? If so, is there any way to improve it?

    invalid 
    opened by jiangweiatgithub 1
Releases(v1.1.2)
Owner
Dani El-Ayyass
Senior NLP Engineer @ Sber AI, Master Student in Applied Mathematics and Computer Science @ CMC MSU
Dani El-Ayyass
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In

InterDigital 21 Dec 29, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023