Weaviate demo with the text2vec-openai module

Overview

Weaviate demo with the text2vec-openai module

This repository contains an example of how to use the Weaviate text2vec-openai module. When using this demo dataset, Weaviate will vectorize the data and the queries based on OpenAI's Babbage model.

What is Weaviate?

Weaviate is an open-source, modular vector search engine. It works like any other database you're used to (it has full CRUD support, it's cloud-native, etc), but it is created around the concept of storing all data objects based on the vector representations (i.e., embeddings) of these data objects. Within Weaviate you can mix traditional, scalar search filters with vector search filters through its GraphQL-API.

Weaviate modules can be used to -among other things- vectorize the data objects you add to Weaviate. In this demo, the text2vec-openai module is used to vectorize all data using OpenAI's Babbage model.

You can read about Weaviate in more detail in the software docs.

About the Dataset

This dataset contains descriptions of 34,886 movies from around the world. The dataset is taken from Kaggle.

Run the setup

Before running this setup, make sure you have an OpenAPI ready, you can create one here.

0. Update you OpenAI API key

$ export OPENAI_APIKEY=YOUR_API_KEY

1. Run the container

Run the container:

$ docker-compose up -d

2. Import the data

After the container starts up, you can import the data by running:

# Install the Weaviate Python client
$ pip3 install -r requirements.txt
# Import the data with the format `./import.py {URL} {OPENAI RATE LIMIT}`
$ ./import.py http://localhost:8080 550

Note: because the OpenAI API comes with a rate limit, we have taken this into account for this demo dataset. If you work with your own dataset and you've requested an increase/removal of your rate limit, you can increase the import speed. You can read here how to do this.

3. Query the data

You can query the data via the GraphQL interface that's available in the Weaviate Console (under "Self Hosted Weaviate").

Or you can test the example queries below.

Example Query

Learn how to use the Get{} function of the Weaviate GraphQL-API here.

{
  Get {
    Movie(
      nearText: {
        concepts: ["Movie about Venice"]
      }
      where: {
        path: ["year"]
        operator: LessThan
        valueInt: 1950
      }
      limit: 5
    ) {
      title
      plot
      year
      director {
        ... on Director {
          name
        }
      }
      genre {
        ... on Genre {
          name
        }
      }
    }
  }
}
Owner
SeMI Technologies
SeMI Technologies creates database software like the Weaviate vector search engine
SeMI Technologies
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022