Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

Overview


This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers more flexibility when using our training scripts, while also making it easier to adapt our code contributions into other projects.

Why DinkyTrain?

The Dinky runs between Princeton Junction and Princeton and is the shortest scheduled commuter rail line in the United States. We also aim to make pre-training short and accessible to everyone.

Our Contributions

  • DeepSpeed transformer kernel integration
  • A training recipe for efficient MLM pre-training
  • An easy-to-follow guideline of using fairseq for MLM pre-training.

Other fairseq features:

See the fairseq repo and its documentation for more details on how to use and extend fairseq.

DinkyTrain for Efficient MLM Pre-training

Quick Links

Overview

You can reproduce the pre-training experiments of our recent paper Should You Mask 15% in Masked Language Modeling?, where we find that higher masking rates can lead to more efficient pre-training.

Installation

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
  • For faster training (FP16) install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For faster training (DeepSpeed cuda kernel) install DeepSpeed library and compile the DeepSpeed kernel
DS_BUILD_TRANSFORMER=1 DS_BUILD_STOCHASTIC_TRANSFORMER=1 pip install deepspeed
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Trouble-shooting:

  • If using lower version of Python, you might encounter import problems with importlib.metadata. Try pip install importlib-metadata.
  • To install apex and deepspeed, you will need nvcc (CUDA compiler).
  • When installing apex, if you encounter the error Cuda extensions are bing compiled with a version of Cuda that does not match ..., go to setup.py and comment out the line that raised the error (at your own risk).
  • Both apex and deepspeed installation require a high gcc version to support c++14. If you encounter relevant errors, update your gcc.

Data Pre-processing

Tokenization: First, download the GPT2 BPE vocabulary:

wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe

Then, tokenize your raw data:

python -m examples.roberta.multiprocessing_bpe_encoder \
    --encoder-json gpt2_bpe/encoder.json \
    --vocab-bpe gpt2_bpe/vocab.bpe \
    --inputs ${SPLIT}.raw \
    --outputs ${SPLIT}.bpe \
    --keep-empty \
    --workers 8

Finally, index and binarize your data:

fairseq-preprocess \
    --only-source \
    --srcdict gpt2_bpe/dict.txt \
    --trainpref ${TRAIN_SPLIT}.bpe \
    --validpref ${VALID_SPLIT}.bpe \
    --testpref ${TEST_SPLIT}.bpe \
    --destdir output-bin \
    --workers 8

Alternatively: Use our pre-processed data: We preprocessed Wikipedia+BookCorpus and shared it on Huggingface dataset. It is ~22GB and contains two epochs of data, each epoch being sliced into 8 shards. You can download it using git:

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/wikibook_fairseq_format

Pre-training

Use our script for efficient pre-training

GPU={number of GPUs} DATA_DIR={data path} [DEEPSPEED=1] bash run_efficient_mlm_recipe.sh

Flags explained

  • GPU: number of GPUs.
  • DATA_DIR: directory to the processed pre-training data. If you are using our preprocessed dataset, DATA_DIR should be:
DATA_DIR=$(seq 0 15 | sed -e 's/^/wikibook_fairseq_format\/bin-shard/' | sed -e 's/$/-8/' | paste -sd ':')
  • DEEPSPEED (optional): if set to 1, the DeepSpeed CUDA kernel will be used.

Please refer to the script for more hyperparameter choices.

Fine-tuning on GLUE and SQuAD

All our checkpoints can be converted to HuggingFace transformers models (see next nextion) and use the transformers package for fine-tuning. Fairseq also supports fine-tuning on GLUE.

First, download the preprocessed GLUE data (you can also process by yourself following the preprocess section above):

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/glue_fairseq_format

Then use the following script for fine-tuning

DATA_DIR={path to the data directory} \
TASK={glue task name (mnli qnli qqp rte sst2 mrpc cola stsb)} \
LR={learning rate} \
BSZ={batch size} \
EPOCHS={number of epochs} \
SEED={random seed} \
CKPT_DIR={checkpoint's directory} \
CKPT_NAME={checkpoint's name} \
[DEEPSPEED=1] bash finetune_glue.sh

For fine-tuning on SQuAD, please convert the models to HuggingFace checkpoints following the next section and use HuggingFace's examples.

Convert to HuggingFace

We also provide conversion codes so that you can easily turn Fairseq checkpoints into HuggingFace checkpoints. Usage:

cd scripts
[PRELAYERNORM=1] [FROM_DS=1] python convert_fs_ckpt_to_hf_ckpt.py --fr {fairseq checkpoint} --to {huggingface checkpoint path} --hf_model_config {roberta-base/roberta-large}

Flags explained:

  • PRELAYERNORM=1: Using pre layer-norm (default is post layer-norm).
  • FROM_DS=1: The Fairseq checkpoint uses DeepSpeed's cuda kernel.
  • --fr: The path to the Fairseq checkpoint.
  • --to: The path you want to save the HuggingFace checkpoint to.
  • --hf_model_config: roberta-base or roberta-large.

IMPORTANT: all our models use pre layer norm, which is not supported by HuggingFace yet. To use it, import the model class from huggingface/modeling_roberta_prelayernorm.py. For example:

from huggingface.modeling_roberta_prelayernorm import RobertaForSequenceClassification

For more configuration, please refer to convert_fs_ckpt_to_hf_ckpt.py.

Model List

Here are the HuggingFace checkpoints of our models in the paper Should You Mask 15% in Masked Language Modeling. Results are development set performance.

Model MNLI QNLI QQP SST-2
princeton-nlp/efficient_mlm_m0.15 84.2 90.9 87.8 93.3
princeton-nlp/efficient_mlm_m0.20 84.1 91.3 87.9 92.7
princeton-nlp/efficient_mlm_m0.30 84.2 91.6 88.0 93.0
princeton-nlp/efficient_mlm_m0.40 84.5 91.6 88.1 92.8
princeton-nlp/efficient_mlm_m0.50 84.1 91.1 88.1 92.7
princeton-nlp/efficient_mlm_m0.60 83.2 90.7 87.8 92.6
princeton-nlp/efficient_mlm_m0.70 82.3 89.4 87.5 91.9
princeton-nlp/efficient_mlm_m0.80 80.8 87.9 87.1 90.5
princeton-nlp/efficient_mlm_m0.15-801010 83.7 90.4 87.8 93.2
princeton-nlp/efficient_mlm_m0.40-801010 84.3 91.2 87.9 93.0

We also offer the original (deepspeed) fairseq checkpoints here.

Bugs or Questions?

If you hav an questions, or encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@article{wettig2022should,
   title={Should You Mask 15% in Masked Language Modeling?},
   author={Wettig, Alexander and Gao, Tianyu and Zhong, Zexuan and Chen, Danqi},
   boo={arXiv preprint arXiv:2202.08005},
   year={2022}
}

Acknowledgment

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53.

  • Our efficient training recipe is based on the following paper:

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021. How to train BERT with an academic budget. In Empirical Methods in Natural Language Processing (EMNLP), pages 10644–10652.

Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022