Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Related tags

Text Data & NLPadp
Overview

Adversarial Purification with Score-based Generative Models

by Jongmin Yoon, Sung Ju Hwang, Juho Lee

This repository includes the official PyTorch implementation of our paper:

Adversarial Purification with Score-based Generative Models

Jongmin Yoon, Sung Ju Hwang, Juho Lee

the 38th International Conference for Machine Learning (ICML 2021)

ArXiv: https://arxiv.org/abs/2106.06041

What does our work do?

We propose a method that gives adversarial robustness to a neural network model against (stochastic) adversarial attacks by using an Energy-based Model (EBM) trained with Denoising Score Matching (DSM), which is called Adversarial denosing purification (ADP).

Running Codes

Dependency

Run the following command to install some necessary python packages to run our code.

pip install -r requirements.txt

Running code

To run the experiments with adp.py or adp_decision.py, enter the following command.

python main.py --config <config-file>

For example, we provide the example configuration file configs/cifar10_bpda_eot_sigma025_eot15.yml in the repository.

Attack and defense

For adversarial attacks, the classifier PGD attack and BPDA+EOT attack are implemented in attacks/clf_pgd.py and attacks/bpda_strong.py, respectively. At the configuration file, setting the attack.attack_method into clf_pgd or bpda_strong will run these attacks, respectively. For defense, we implemented the main ADP algorithm and ADP after detecting adversarial examples (Appendix F.) in purification/adp.py and purification/adp_decision.py, respectively.

Main components

File name Explanation
main.py Execute the main code, with initializing configurations and loggers.
runners/empirical.py Attacks and purifies the image to show empirical adversarial robustness.
attacks/bpda_strong.py Code for BPDA+EOT attack.
purification/adp.py Code for adversarial purification.
ncsnv2/* Code for training the EBM, i.e., NCSNv2 (paper, code).
networks/* Code for used classifier network architectures.
utils/* Utility files.

Notes

  • For the configuration files, we use the pixel ranges [0, 255] for the perturbation scale attack.ptb and the one-step attack scale attack.alpha. And the main experiments are performed within the pixel range [0, 1] after being rescaled during execution.
  • For training the EBM and classifier models, we primarily used the pre-existing methods such as NCSNv2 and WideResNet classifier. Here is the repository we used for training the WideResNet classifier. Nevertheless, other classifiers, such as the pre-trained adversarially robust classifier implemented in here can be used.

Reference

If you find our work useful for your research, please consider citing this.

@inproceedings{
yoon2021advpur,
title={Adversarial Purification with Score-based Generative Models},
author={Jongmin Yoon and Sung Ju Hwang and Juho Lee},
booktitle={Proceedings of The 38th International Conference on Machine Learning (ICML 2021)},
year={2021},
}

Contact

For further details, please contact [email protected].

License

MIT

Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022