Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Related tags

Text Data & NLPadp
Overview

Adversarial Purification with Score-based Generative Models

by Jongmin Yoon, Sung Ju Hwang, Juho Lee

This repository includes the official PyTorch implementation of our paper:

Adversarial Purification with Score-based Generative Models

Jongmin Yoon, Sung Ju Hwang, Juho Lee

the 38th International Conference for Machine Learning (ICML 2021)

ArXiv: https://arxiv.org/abs/2106.06041

What does our work do?

We propose a method that gives adversarial robustness to a neural network model against (stochastic) adversarial attacks by using an Energy-based Model (EBM) trained with Denoising Score Matching (DSM), which is called Adversarial denosing purification (ADP).

Running Codes

Dependency

Run the following command to install some necessary python packages to run our code.

pip install -r requirements.txt

Running code

To run the experiments with adp.py or adp_decision.py, enter the following command.

python main.py --config <config-file>

For example, we provide the example configuration file configs/cifar10_bpda_eot_sigma025_eot15.yml in the repository.

Attack and defense

For adversarial attacks, the classifier PGD attack and BPDA+EOT attack are implemented in attacks/clf_pgd.py and attacks/bpda_strong.py, respectively. At the configuration file, setting the attack.attack_method into clf_pgd or bpda_strong will run these attacks, respectively. For defense, we implemented the main ADP algorithm and ADP after detecting adversarial examples (Appendix F.) in purification/adp.py and purification/adp_decision.py, respectively.

Main components

File name Explanation
main.py Execute the main code, with initializing configurations and loggers.
runners/empirical.py Attacks and purifies the image to show empirical adversarial robustness.
attacks/bpda_strong.py Code for BPDA+EOT attack.
purification/adp.py Code for adversarial purification.
ncsnv2/* Code for training the EBM, i.e., NCSNv2 (paper, code).
networks/* Code for used classifier network architectures.
utils/* Utility files.

Notes

  • For the configuration files, we use the pixel ranges [0, 255] for the perturbation scale attack.ptb and the one-step attack scale attack.alpha. And the main experiments are performed within the pixel range [0, 1] after being rescaled during execution.
  • For training the EBM and classifier models, we primarily used the pre-existing methods such as NCSNv2 and WideResNet classifier. Here is the repository we used for training the WideResNet classifier. Nevertheless, other classifiers, such as the pre-trained adversarially robust classifier implemented in here can be used.

Reference

If you find our work useful for your research, please consider citing this.

@inproceedings{
yoon2021advpur,
title={Adversarial Purification with Score-based Generative Models},
author={Jongmin Yoon and Sung Ju Hwang and Juho Lee},
booktitle={Proceedings of The 38th International Conference on Machine Learning (ICML 2021)},
year={2021},
}

Contact

For further details, please contact [email protected].

License

MIT

Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
Mirco Ravanelli 2.3k Dec 27, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022