Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Overview

Status: Archive (code is provided as-is, no updates expected)

Update August 2020: For an example repository that achieves state-of-the-art modeling performance on CIFAR-10 using Sparse Transformers, please see https://github.com/openai/distribution_augmentation

Sparse Attention

This repository contains the sparse attention primitives used in Sparse Transformers (see blog and paper). Specifically, it includes the following:

  1. A faster implementation of normal attention (the upper triangle is not computed, and many operations are fused).
  2. An implementation of "strided" and "fixed" attention, as in the Sparse Transformers paper.
  3. A simple recompute decorator, which can be adapted for usage with attention.

We hope this code can further accelerate research into sparse attention.

An example Transformer implementation which is close to the version we use internally can be found at https://github.com/openai/blocksparse/blob/master/examples/transformer/enwik8.py.

Overview of kernels

The repository contains fused implementations of the attention operation, which takes in Q, K, V matrices (all of dimensionality batch, time, dim) representing the queries, keys, and values for a sequence. For every query element, a weighted sum of the values is returned, where the weightings are determined by the scaled matrix product of Q and K^T.

The kernels allow specification of block sparsity in the QK^T matrix. This means you define a pattern of 0/1s on a [time/blocksize, time/blocksize] matrix of blocks, and the values where it is 0 will not be computed, and not be included in the softmax calculation. Additionally, one can define "callbacks" on the computed blocks, which will further mask out values in any given block from the softmax (though the matrix product will still be computed for those elements).

Block sizes of {8, 16, 32, 64} are supported, and slight advantages in speed may be seen from using larger blocks.

Prerequisites

For fp32 and blocksize 32, any NVIDIA GPU past Kepler can be used (i.e. compute capability beyond 3.5).

For fp16 and blocksize 8, 16, 32, 64, a GPU with Tensor Cores (e.g. the V100 GPU, compute capability >= 7.0) is required.

The primary dependency is the OpenAI blocksparse package.

With CUDA 10 and tensorflow-gpu, you can install blocksparse with pip install blocksparse.

For other setups, you must install blocksparse from source, and directions can be found in the root of the repository.

Examples

Run the following on a non-V100 GPU:

python attention.py

On a V100 GPU:

python attention.py fp16

General usage

An example can be found at the bottom of attention.py.

full_attn_tf = attention_impl(q, k, v, heads=4, attn_mode="all", recompute=True)
full_attn_bs = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="all", recompute=True)

# first step of strided attention
local_attn_bs = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="local", local_attn_ctx=32, recompute=True)
local_attn_tf = attention_impl(q, k, v, heads=4, attn_mode="local", local_attn_ctx=32, recompute=True)

# second step of strided attention
strided_attn_bs = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="strided", local_attn_ctx=32, recompute=True)
strided_attn_tf = attention_impl(q, k, v, heads=4, attn_mode="strided", local_attn_ctx=32, recompute=True)

# # the 'fixed' attention pattern
fixed = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="fixed", local_attn_ctx=128, num_verts=4, vertsize=1, recompute=True)

Referencing this work

If you find this helpful in your work, you can consider citing the following:

@article{child2019sparsetransformer,
  title={Generating Long Sequences with Sparse Transformers},
  author={Child, Rewon and Gray, Scott and Radford, Alec and Sutskever, Ilya},
  journal={URL https://openai.com/blog/sparse-transformers},
  year={2019}
}
Owner
OpenAI
OpenAI
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022