This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Overview

Ditch the Gold Standard: Re-evaluating Conversational Question Answering

This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering.

Overview

In this work, we conduct the first large-scale human evaluation of state-of-the-art conversational QA systems. In our evaluation, human annotators chat with conversational QA models about passages from the QuAC development set, and after that the annotators judge the correctness of model answers. We release the human annotated dataset in the following section.

We also identify a critical issue with the current automatic evaluation, which pre-collectes human-human conversations and uses ground-truth answers as conversational history (differences between different evaluations are shown in the following figure). By comparison, we find that the automatic evaluation does not always agree with the human evaluation. We propose a new evaluation protocol that is based on predicted history and question rewriting. Our experiments show that the new protocol better reflects real-world performance compared to the original automatic evaluation. We also provide the new evaluation protocol code in the following.

Different evaluation protocols

Human Evaluation Dataset

You can download the human annotation dataset from data/human_annotation_data.json. The json file contains one data field data, which is a list of conversations. Each conversation contains the following fields:

  • model_name: The model evaluated. One of bert4quac, graphflow, ham, excord.
  • context: The passage used in this conversation.
  • dialog_id: The ID from the original QuAC dataset.
  • qas: The conversation, which contains a list of QA pairs. Each QA pair has the following fields:
    • turn_id: The number of turn.
    • question: The question from the human annotator.
    • answer: The answer from the model.
    • valid: Whether the question is valid (annotated by our human annotator).
    • answerable: Whether the question is answerable (annotated by our human annotator).
    • correct: Whether the model's answer is correct (annotated by our human annotator).

Automatic model evaluation interface

We provide a convenient interface to test model performance on a few evaluation protocols compared in our paper, including Auto-Pred, Auto-Replace and our proposed evaluation protocol, Auto-Rewrite, which better demonstrates models' performance in human-model conversations. Please refer to our paper for more details. Following is a figure describing how Auto-Rewrite works.

Auto-rewrite

To use our evaluation interface on your own model, follow the steps:

  • Step 1: Download the QuAC dataset.

  • Step 2: Install allennlp, allennlp_models, ncr.replace_corefs through pip if you would like to use Auto-Rewrite.

  • Step 3: Download the CANARD dataset and set --canard_path if you would like to use Auto-Replace.

  • Step 4: Write a model interface following the template interface.py. Explanations to each function are provided through in-line comments. Make sure to import all your model dependencies at the top.

  • Step 5: Add the model to the evaluation script run_quac_eval.py. Changes that are need to be made are marked with #TODO.

  • Step 6: Run evaluation script. See run.sh for reference. Explanations of all arguments are provided in run_quac_eval.py. Make sure to turn on only one of --pred, --rewrite or --replace.

Citation

@article{li2021ditch,
   title={Ditch the Gold Standard: Re-evaluating Conversational Question Answering},
   author={Li, Huihan and Gao, Tianyu and Goenka, Manan and Chen, Danqi},
   journal={arXiv preprint arXiv:2112.08812},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022