We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

Overview

[SIGGRAPH Asia 2021] Time-Travel Rephotography

Open in Colab

[Project Website]

Many historical people were only ever captured by old, faded, black and white photos, that are distorted due to the limitations of early cameras and the passage of time. This paper simulates traveling back in time with a modern camera to rephotograph famous subjects. Unlike conventional image restoration filters which apply independent operations like denoising, colorization, and superresolution, we leverage the StyleGAN2 framework to project old photos into the space of modern high-resolution photos, achieving all of these effects in a unified framework. A unique challenge with this approach is retaining the identity and pose of the subject in the original photo, while discarding the many artifacts frequently seen in low-quality antique photos. Our comparisons to current state-of-the-art restoration filters show significant improvements and compelling results for a variety of important historical people.

Time-Travel Rephotography
Xuan Luo, Xuaner Zhang, Paul Yoo, Ricardo Martin-Brualla, Jason Lawrence, and Steven M. Seitz
In SIGGRAPH Asia 2021.

Demo

We provide an easy-to-get-started demo using Google Colab! The Colab will allow you to try our method on the sample Abraham Lincoln photo or your own photos using Cloud GPUs on Google Colab.

Open in Colab

Or you can run our method on your own machine following the instructions below.

Prerequisite

  • Pull third-party packages.
    git submodule update --init --recursive
    
  • Install python packages.
    conda create --name rephotography python=3.8.5
    conda activate rephotography
    conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
    pip install -r requirements.txt
    

Quick Start

Run our method on the example photo of Abraham Lincoln.

  • Download models:
    ./scripts/download_checkpoint.sh
    
  • Run:
    ./scripts/run.sh b "dataset/Abraham Lincoln_01.png" 0.75 
    
  • You can inspect the optimization process by
    tensorboard --logdir "log/Abraham Lincoln_01"
    
  • You can find your results as below.
    results/
      Abraham Lincoln_01/       # intermediate outputs for histogram matching and face parsing
      Abraham Lincoln_01_b.png  # the input after matching the histogram of the sibling image
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.png        # the sibling image
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.pt         # the sibing latent codes and initialized noise maps
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).png             # the output result
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).pt              # the final optimized latent codes and noise maps
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-rand.png        # the result with the final latent codes but random noise maps
    
    

Run on Your Own Image

  • Crop and align the head regions of your images:

    python -m tools.data.align_images <input_raw_image_dir> <aligned_image_dir>
    
  • Run:

    ./scripts/run.sh <spectral_sensitivity> <input_image_path> <blur_radius>
    

    The spectral_sensitivity can be b (blue-sensitive), gb (orthochromatic), or g (panchromatic). You can roughly estimate the spectral_sensitivity of your photo as follows. Use the blue-sensitive model for photos before 1873, manually select between blue-sensitive and orthochromatic for images from 1873 to 1906 and among all models for photos taken afterwards.

    The blur_radius is the estimated gaussian blur radius in pixels if the input photot is resized to 1024x1024.

Historical Wiki Face Dataset

Path Size Description
Historical Wiki Face Dataset.zip 148 MB Images
spectral_sensitivity.json 6 KB Spectral sensitivity (b, gb, or g).
blur_radius.json 6 KB Blur radius in pixels

The jsons are dictionares that map input names to the corresponding spectral sensitivity or blur radius. Due to copyright constraints, Historical Wiki Face Dataset.zip contains all images in the Historical Wiki Face Dataset that were used in our user study except the photo of Mao Zedong. You can download it separately and crop it as above.

Citation

If you find our code useful, please consider citing our paper:

@article{Luo-Rephotography-2021,
  author    = {Luo, Xuan and Zhang, Xuaner and Yoo, Paul and Martin-Brualla, Ricardo and Lawrence, Jason and Seitz, Steven M.},
  title     = {Time-Travel Rephotography},
  journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2021)},
  publisher = {ACM New York, NY, USA},
  volume = {40},
  number = {6},
  articleno = {213},
  doi = {https://doi.org/10.1145/3478513.3480485},
  year = {2021},
  month = {12}
}

License

This work is licensed under MIT License. See LICENSE for details.

Codes for the StyleGAN2 model come from https://github.com/rosinality/stylegan2-pytorch.

Acknowledgments

We thank Nick Brandreth for capturing the dry plate photos. We thank Bo Zhang, Qingnan Fan, Roy Or-El, Aleksander Holynski and Keunhong Park for insightful advice.

This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022