Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Overview

Ancient Greek BERT

The first and only available Ancient Greek sub-word BERT model!

State-of-the-art post fine-tuning on Part-of-Speech Tagging and Morphological Analysis.

Pre-trained weights are made available for a standard 12 layer, 768d BERT-base model.

You can also use the model directly on the HuggingFace Model Hub here.

Please refer to our paper titled: "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek". In Proceedings of The 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2021).

How to use

Requirements:

pip install transformers
pip install unicodedata
pip install flair

Can be directly used from the HuggingFace Model Hub with:

from transformers import AutoTokenizer, AutoModel
tokeniser = AutoTokenizer.from_pretrained("pranaydeeps/Ancient-Greek-BERT")
model = AutoModel.from_pretrained("pranaydeeps/Ancient-Greek-BERT")  

Fine-tuning for POS/Morphological Analysis

  • finetune_pos.py can be used to finetune the BERT model for POS tagging on your own data. We provide sample files from the Gold standard treebanks, however the full treebanks can't be made available at this time. Please contact the authors for more details.
  • Even though the full treebanks aren't made available, we provide a pre-trained POS Tagging model in the directory SuperPeitho-FLAIR-v2, which can directly be used for inference and has an accuracy of ~90 percent on the 3 treebanks available. You can import the pre-trained model in FLAIR with:
from flair.models import SequenceTagger
tagger = SequenceTagger.load('SuperPeitho-FLAIR-v2/final-model.pt')

Training data

The model was initialised from AUEB NLP Group's Greek BERT and subsequently trained on monolingual data from the First1KGreek Project, Perseus Digital Library, PROIEL Treebank and Gorman's Treebank

Training and Eval details

Standard de-accentuating and lower-casing for Greek as suggested in AUEB NLP Group's Greek BERT. The model was trained on 4 NVIDIA Tesla V100 16GB GPUs for 80 epochs, with a max-seq-len of 512 and results in a perplexity of 4.8 on the held out test set. It also gives state-of-the-art results when fine-tuned for PoS Tagging and Morphological Analysis on all 3 treebanks averaging >90% accuracy. Please consult our paper or contact me for further questions!

Cite

If you end up using Ancient-Greek-BERT in your research, please cite the paper:

@inproceedings{ancient-greek-bert,
author = {Singh, Pranaydeep and Rutten, Gorik and Lefever, Els},
title = {A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek},
year = {2021},
booktitle = {The 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2021)}
}
You might also like...
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

The implementation of our CIKM 2021 paper titled as:
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders

MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Comments
  • Morphological Analysis Examples

    Morphological Analysis Examples

    @pranaydeeps Is possible to add simple code example how to do morphological analysis of some short ancient greek sentence? Maybe some examples of:

    • POS tagging
    • cosine sentence similarity

    Thank You very much for the model. I tried to train smaller BERT model but i didn't have enough GPU resources. I would like to use your model for New Testament analysis.

    documentation 
    opened by PeterPirog 3
Releases(v1.0.0)
Owner
Pranaydeep Singh
Doctoral Researcher in Computational Linguistics @GhentUniversity
Pranaydeep Singh
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022