Benchmarks for the Optimal Power Flow Problem

Overview

Power Grid Lib - Optimal Power Flow

This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emerging Power System Algorithms and is designed to evaluate a well established version of the the AC Optimal Power Flow problem. This introductory video and detailed report present the motivations and goals of this benchmark library. In particular, these cases are designed for benchmarking algorithms that solve the following Non-Convex Nonlinear Program,

  The Mathematical Model of the Optimal Power Flow Problem  

A detailed description of this mathematical model is available here. All of the cases files are curated in the MATPOWER data format. Open-source reference implementations are available in MATPOWER and PowerModels.jl and baseline results are reported in BASELINE.md.

Problem Variants

These cases may also be useful for benchmarking the following variants of the Optimal Power Flow problem,

  • DC Optimal Power Flow
  • AC Optimal Transmission Switching
  • DC Optimal Transmission Switching

That said, these cases are curated with the AC Optimal Power Flow problem in mind. Application to other domains and problem variants should be done with discretion.

Case File Overview

A forthcoming technical report will detail the sources, motivations, and procedures for curating these case files.

In this repository the network data files are organized into the following three broad groups:

  • /*.m - base case benchmarks as originally specified
  • /api/*.m - heavily loaded test cases (i.e. binding thermal limit constraints)
  • /sad/*.m - small phase angle difference cases (i.e. binding phase angle difference constraints)

Contributions

All case files are provided under a Creative Commons Attribution License, which allows anyone to share or adapt these cases as long as they give appropriate credit to the orginal author, provide a link to the license, and indicate if changes were made.

Community-based recommendations and contributions are welcome and encouraged in all PGLib repositories. Please feel free to submit comments and questions in the issue tracker. Corrections and new network contributions are welcome via pull requests. All data contributions are subject to a quality assurance review by the repository curator(s).

Citation Guidelines

This repository is not static. Consequently, it is critically important to indicate the version number when referencing this repository in scholarly work.

Users of this these cases are encouraged to cite the original source documents that are indicated in the file headers and the achrive report.

Comments
  • DC Baselines, Constraints, and Inf

    DC Baselines, Constraints, and Inf

    Hello, I have some related questions about the DC OPF baselines.

    1. It seems that for many of the typical operating conditions, the DC approximation better minimizes the cost than the full AC solution. Is this expected? Does this factor in any constraint violations?

    2. In some of the small angle difference cases, the objective values for the DC approximation are listed as "Inf". Does that indicate a constraint violation?

    opened by ElPiloto 5
  • radial test cases

    radial test cases

    It seems none of the test cases in pglib-opf are radial? That makes it hard to use any of these benchmarks to use/extend them for models that require a consistent definition of upstream/downstream, e.g. as in [1] below.

    I recall that the NESTA archive had a /rad m file collection. Was there any discussion on including that in pglib-opf? What happened to it?

    [1] Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J., & Pinson, P. (2020). Differentially Private Optimal Power Flow for Distribution Grids, 1, 1–9. Retrieved from http://arxiv.org/abs/2004.03921

    opened by frederikgeth 5
  • Help In SDP-Relaxation method for solving OPF Problem

    Help In SDP-Relaxation method for solving OPF Problem

    Hello Sir, i came to know about you from your videos of Convex Relaxations in Youtube... Sir i need help from you, i am stuck in my project work....i am trying to find an optimze a system 3m9b for test....

    and i wrote the optimization problem like this.... for i=1:1 cvx_begin cvx_solver sedumi

    variables u(npv,1) variable W(2n,2n) symmetric summ=trace(YYreal(:,:,1)*W); for i=2:n summ=summ+trace(YYreal(:,:,i)*W); end for i=1:npv u(i,1)==trace(YYreal(:,:,i+npq)W);
    (This u contais the PV buses active power generation...(whose optimal value has to be found)) end minimize(w
    (sum(u)+trace(YYreal(:,:,n)*W)))

    subject to for i=1:npq (this are equality constraints "calculated active power=specified active power" for pv&pq buses) trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; end for i=1:npv (this bounds i thought to apply after getting a local optimal solution from Newtons Method) trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)>=-0.2 trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)<=3 end

    for i=1:npq (this are equality constraints "calculated reactive power=specified reactive power" for only pq buses) trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; end

    W==semidefinite(2*n); W>=0; cvx_end w=w+1 for i=1:npv Pg(i+npq,1)=trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1); end end

    Sir, in the paper it is "Zero Duality Gap In Optimal Power Flow" that rank of W matrix variable should come=1 when the duality gap is "0". and for that we applied weight method.(w is the weight)..

    Sir.. for some values of w i get solution as 'NAN'. and for some i get an optimal solution...but the 'W matrix' never comes of rank 1...

    i dont know where i am going wrong...but please help me with this....

    opened by 12146 1
  • Line limits units (`rateA`)

    Line limits units (`rateA`)

    Hi, first, thanks for your work aggregating and building this library!

    I'm trying to use the 1354pegase case and am implementing my own simplified opf model where I want to impose line current constraints for line l = (i,j) according to

    (|y_ij| |V_i - V_j|)^2 <= rhs
    

    for V_i, V_j the complex voltages at buses i and j and |y_ij| is the magnitude of the (i,j) element of the admittance matrix. (Btw, I'm ignoring tap adjustments now...)

    However, I'm not sure what the units of the rhs should be from the pglib case. According to Table V of the report (https://arxiv.org/abs/1908.02788), it seems that rateA is a thermal limit that was determined by the TL-UB method from Section V.B.2. Does this mean that the rateA is already normalized by baseMVA and given in p.u. form? Or should I divide rateA by 100 to get the p.u. (and then square it to set the value of the rhs).

    Thanks!

    opened by jacob-roth 1
  • Tranformer Parameter Checks

    Tranformer Parameter Checks

    In some cases all tap settings are 1.0, I check should be made so that this only occurs when the value is not 1.0 or the branch is connecting two voltage levels.

    opened by ccoffrin 1
  • Inverted Generator Bounds

    Inverted Generator Bounds

    Some inactive generators have infeasible active power bounds (i.e. pmax < pmin). Resolve this by ensuring,

    pmin = min(pmin,pmax)
    pmax = min(pmin,pmax)
    

    in all generators.

    opened by ccoffrin 0
  • Generator LB higher than UB in 1888_rte__api

    Generator LB higher than UB in 1888_rte__api

    In pglib_opf_case1888_rte__api.m, the real power lower bound for the generator at bus 1689 (line 2,044 of the `.m' file) is 280.0, but the upper bound has been modified to be 64 (from 930 in the original case). Is this intentional? If so, what does it mean if the generator is turned on?

    Thank you for your help!

    opened by emma58 2
  • Error when solving case89_pegase__api and case240_pserc__api

    Error when solving case89_pegase__api and case240_pserc__api

    Hello,

    I got the following error when solving OPF for 2 test cases: case89_pegase__api and case240_pserc__api with the MATPOWER function runopf. It seems that there is a problem when generator bound Pmax is 0.

    Error using makeAvl (line 52) makeAvl: either Qmin or Qmax must be equal to zero for each dispatchable load.

    Error in opf_setup (line 171) [Avl, lvl, uvl] = makeAvl(baseMVA, gen);

    Error in opf (line 198) om = opf_setup(mpc, mpopt);

    Error in runopf (line 75) [r, success] = opf(casedata, mpopt);

    Best regards,

    Christian

    opened by cbingane 7
  • Add 68-Bus System

    Add 68-Bus System

    Explore the possibility of including a network derived from the 68-Bus, 16-Machine, 5-Area Dynamic Test System.

    Related Links:

    • http://sites.ieee.org/pes-psdp/benchmark-systems-2/
    • https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
    • http://icseg.iti.illinois.edu/new-england-68-bus-test-system/
    • http://sites.ieee.org/pes-resource-center/files/2015/08/PES_TR18_Benchmark-Systems-for-Small-Signal-Stability-Analysis-and-Control.pdf
    • http://www.sel.eesc.usp.br/ieee/NETS68/New_England_New_York_68_Bus_System_study_report.pdf
    opened by ccoffrin 0
Releases(v21.07)
Owner
A Library of IEEE PES Power Grid Benchmarks
A Library of IEEE PES Power Grid Benchmarks
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022