GANTheftAuto is a fork of the Nvidia's GameGAN

Overview

Description

GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done with GameGAN was with games like Pacman, and we aimed to try to emulate one of the most complex environments in games to date with Grand Theft Auto 5.

Video

(click to watch)

GAN Theft Auto Video

GANTheftAuto focuses mainly on the Grand Theft Auto 5 (GTA5) game, but contains other environments as well. In addition to the original project, we provide a set of improvements and fixes, with the most important ones being:

  • ability to use the newest PyTorch version, which as of now is 1.8.1
  • ability to use non-square images (16:8 in our case)
  • larger generator and discriminator models
  • ability to use more than 2 generators
  • inference script (which is absent in the GameGAN repository)
  • ability to use upsample model with inference
  • ability to show generator outputs live during training (training preview) (soon with one of the future commits)

The work is still in progress as we know that our results can be greatly improved still.

GANTheftAuto

GANTheftAuto output on the left, upscaled 4x for better visibility, and upsampled output (by a separate model)

Playable demo

You can instantly run the demo:

(you need a CUDA capable Nvidia GPU to run this demo)

  • Download and unzip or clone this repository:

    git clone https://github.com/Sentdex/GANTheftAuto.git
    cd GANTheftAuto
    
  • Install requirements

    Install (the highest) CUDA version of PyTorch following instructions at PyTorch's website (there is no universal command to do so). ROCm and CPU versions are currently not supported by the project.

    pip3 install -r requirements.txt
    pip3 install tensorflow-gpu tensorflow_addons
    
  • Run inference:

    ./scripts/gtav_inference_demo.sh
    

    or

    scripts\gtav_inference_demo.bat
    

We are providing one of our trained models on GTA5 data as well as an 8x upsample model (part of a separate project). There's no GTA V running, this is the actual GAN output of a human playing within the GAN environment.

Example actual output of these demo models:

GANTheftAuto - demo

Trainable demo

(you need a CUDA capable Nvidia GPU to run this demo)

Since we cannot share out data collecting script, which involves a GTA5 mod and python code, we are sharing a sample dataset which you can use to train your model on. It's included within the data/gtav/gtagan_2_sample folder.

To train your own model, follow the steps above, but run a training script instead.

  • Run training:
    ./scripts/gtav_multi_demo.sh
    
    or
    scripts\gtav_inference_demo.bat
    

You'll need a GPU with at least 8 GB of VRAM.

Batch size in the demo scripts is currently set to 1. If you have 16 GB of VRAM or more, try to find the biggest batch that you can fit in your GPU(s).

General

(you need a CUDA capable Nvidia GPU to run this code, but we are open for contribution to make it running on AMD GPUs as well)

Environment Setup

  • Download and unzip or clone the repository

    git clone https://github.com/Sentdex/GANTheftAuto.git
    cd GANTheftAuto
    
  • Install dependencies

    Install (the highest) CUDA version of PyTorch following instructions at PyTorch's website (there is no universal command to do so). ROCm and CPU versions are currently not supported by the project.

    pip3 install -r requirements.txt
    

Dataset extraction

Currently, GTA V, Vroom and Cartpole are the only implemented data sources.

GTA V environment

This is an environment created using Grand Theft Auto V. We created our own GTA5 mod accompanied by a Python script to collect the data. It contains a simple driving AI (which we named DumbAI ;) ). We are pulling road nodes from the game and apply math transformations to create paths, then we are spawning multiple cars at the same time and alternate them to pull multiple streams at the same time (to speedup training). Game mod accepts steering commands from the Python script as well as limits the speed and sets other options like weather, traffic, etc. Python script analyzes current car position and nearest road nodes to drive using different paths to cover all possible actions and car positions as best as possible. This is important for further seamless experience with player "playing" the environment - it needs to output coherent and believable images.

Data collecting demo with visible road nodes (not included in the final training data): GANTheftAuto data collecting demo

(click to watch on YouTube)

As mentioned above, we can't share our data collecting scripts, but we are providing sample dataset. If you believe you have a model that has interesting results, feel free to reach out and we may try to train it on the full dataset.

You can also create your own dataset by recording frames and actions at 10 FPS. Save format is gzipped pickle file containing a dictionary of 'actions' and 'observations'. Actions are a single-dimensional NumPy array of 0 (left), 1 (straight) and 2 (right), while observations are a four-dimensional array where the first dimension are samples, and the other are (48, 80, 3) - RGB image size. Ungzip and unpickle example sample from the sample dataset to learn more about the data structure. Each file should contain a single sequence length of at least 32 frames.

Example train script is available at scripts/gtav_multi.sh (as well as its .bat version).

Vroom environment

Vroom is our own environment based on the OpenmAI Gym's Box2D CarRacing environment, but this one does not require Gym to run. Its only dependencies are OpenCV and NumPy.

Example track with a slice of what's actually saved as a training data:

GANTheftAuto - Vroom data

(blue, red and purple lines are shown for visualization purposes only and are not a part of the training data)

Example model output (we've never hunted for best possible output and switch to GTAV instead): GANTheftAuto - Vroom playing

We are including the data collecting script - a simple AI (DumbAI) is playing the environment to collect the data. The car is "instructed" to follow the road, with additional constantly changing offset from the center of teh road, turns and u-turns to cover all possible scenarios.

To run the data collector:

  • Install dependencies
    cd data/vroom
    pip3 install - requirements.txt
    
  • Edit collect_data.py if you need to change any defaults
  • Run the data extraction
    python3 collect_data.py
    

NEAT-Cartpole

This environment is created with OpenAI Gym's Cartpole. However, the data collecting part is unattended as we are first training the NEAT algoritm to play it, then collect data generated this way.

Warning: recently we've discovered a possible issue with this environment causing actions to alternate between a direction and no action. As for now we have no fix for this environment, so your model results are highly likely to not be very useful. We'd recommend trying to build your own agent to play cartpole instead of a NEAT bot.

To run the data collector:

  • Install dependencies
    cd data/cartpole
    pip3 install - requirements.txt
    
  • Edit neat_cartpole.py and update constants (at the bottom of the script) to your needs
  • Run the data extraction
    python3 neat_cartpole.py
    

Training

We provide training scripts in './scripts'.

GTA V

  • For training the full GameGAN model, run:
    ./scripts/gtav_multi.sh
    

Vroom

  • For training the full GameGAN model, run:
    ./scripts/vroom_multi.sh
    

NEAT-Cartpole

  • For training the full GameGAN model, run:
    ./scripts/cartpole_multi.sh
    

Monitoring

  • You can monitor the training process with tensorboard:
    tensorboard --logdir=./results
    

Inference

Inference is currently unfinished - can be ran, but actions are randomly generated instead of taken from the user input. We'll finish it up shortly.

Vroom

Edit scripts/gtav_inference.sh and update the model filename, then run:

./scripts/gtav_inference.sh

Vroom

Edit scripts/cartpole_inference.sh and update the model filename, then run:

./scripts/cartpole_inference.sh

NEAT-Cartpole

Edit scripts/cartpole_inference.sh and update the model filename, then run:

./scripts/cartpole_inference.sh

Parts of the Original Nvidia's GameGAN readme

(head to the GameGAN for a full version)

This part describes the VidDom environment which we did not use in our work. The repository also contains Pac Man environment which have been never described and no data collection scrpts were provided.

Dataset extraction

Please clone and follow https://github.com/hardmaru/WorldModelsExperiments/tree/master/doomrnn to install the VizDoom environment.

  • Copy extraction scripts and run
cp data/extract.py DOOMRNN_DIR/
cp data/extract_data.sh DOOMRNN_DIR/
cd DOOMRNN_DIR
./extract_data.sh
  • Now, extracted data is saved in 'DOOMRNN_DIR/vizdoom_skip3'
cd GameGAN_code/data
python dataloader.py DOOMRNN_DIR/vizdoom_skip3 vizdoom
  • You should now see .npy files extracted in 'data/vizdoom' directory.

For custom datasets, you can construct .npy files that contain a sequence of image and action pairs and define a dataloader similar to 'class vizdoom_dataset'. Please refer to 'data/dataloder.py'.

-- The above repository is deprecated and VizDoom environment might not run correctly in certain systems. In that case, you can use the docker installtaion of https://github.com/zacwellmer/WorldModels and copy the extraction scripts in the docker environment.

Training

We provide training scripts in './scripts'.

  • For training the full GameGAN model, run:
./scripts/vizdoom_multi.sh
  • For training the GameGAN model without the external memory module, run:
./scripts/vizdoom_single.sh

Monitoring

  • You can monitor the training process with tensorboard:
tensorboard --port=PORT --logdir=./results

Tips

  • Different environments might need different hyper-parameters. The most important hyper-parameter is 'recon_loss_multiplier' in 'config.py', which usually works well with 0.001 ~ 0.05.
  • Environments that do not need long-term consistency usually works better without the external memory module
Owner
Harrison
Harrison
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022