GANTheftAuto is a fork of the Nvidia's GameGAN

Overview

Description

GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done with GameGAN was with games like Pacman, and we aimed to try to emulate one of the most complex environments in games to date with Grand Theft Auto 5.

Video

(click to watch)

GAN Theft Auto Video

GANTheftAuto focuses mainly on the Grand Theft Auto 5 (GTA5) game, but contains other environments as well. In addition to the original project, we provide a set of improvements and fixes, with the most important ones being:

  • ability to use the newest PyTorch version, which as of now is 1.8.1
  • ability to use non-square images (16:8 in our case)
  • larger generator and discriminator models
  • ability to use more than 2 generators
  • inference script (which is absent in the GameGAN repository)
  • ability to use upsample model with inference
  • ability to show generator outputs live during training (training preview) (soon with one of the future commits)

The work is still in progress as we know that our results can be greatly improved still.

GANTheftAuto

GANTheftAuto output on the left, upscaled 4x for better visibility, and upsampled output (by a separate model)

Playable demo

You can instantly run the demo:

(you need a CUDA capable Nvidia GPU to run this demo)

  • Download and unzip or clone this repository:

    git clone https://github.com/Sentdex/GANTheftAuto.git
    cd GANTheftAuto
    
  • Install requirements

    Install (the highest) CUDA version of PyTorch following instructions at PyTorch's website (there is no universal command to do so). ROCm and CPU versions are currently not supported by the project.

    pip3 install -r requirements.txt
    pip3 install tensorflow-gpu tensorflow_addons
    
  • Run inference:

    ./scripts/gtav_inference_demo.sh
    

    or

    scripts\gtav_inference_demo.bat
    

We are providing one of our trained models on GTA5 data as well as an 8x upsample model (part of a separate project). There's no GTA V running, this is the actual GAN output of a human playing within the GAN environment.

Example actual output of these demo models:

GANTheftAuto - demo

Trainable demo

(you need a CUDA capable Nvidia GPU to run this demo)

Since we cannot share out data collecting script, which involves a GTA5 mod and python code, we are sharing a sample dataset which you can use to train your model on. It's included within the data/gtav/gtagan_2_sample folder.

To train your own model, follow the steps above, but run a training script instead.

  • Run training:
    ./scripts/gtav_multi_demo.sh
    
    or
    scripts\gtav_inference_demo.bat
    

You'll need a GPU with at least 8 GB of VRAM.

Batch size in the demo scripts is currently set to 1. If you have 16 GB of VRAM or more, try to find the biggest batch that you can fit in your GPU(s).

General

(you need a CUDA capable Nvidia GPU to run this code, but we are open for contribution to make it running on AMD GPUs as well)

Environment Setup

  • Download and unzip or clone the repository

    git clone https://github.com/Sentdex/GANTheftAuto.git
    cd GANTheftAuto
    
  • Install dependencies

    Install (the highest) CUDA version of PyTorch following instructions at PyTorch's website (there is no universal command to do so). ROCm and CPU versions are currently not supported by the project.

    pip3 install -r requirements.txt
    

Dataset extraction

Currently, GTA V, Vroom and Cartpole are the only implemented data sources.

GTA V environment

This is an environment created using Grand Theft Auto V. We created our own GTA5 mod accompanied by a Python script to collect the data. It contains a simple driving AI (which we named DumbAI ;) ). We are pulling road nodes from the game and apply math transformations to create paths, then we are spawning multiple cars at the same time and alternate them to pull multiple streams at the same time (to speedup training). Game mod accepts steering commands from the Python script as well as limits the speed and sets other options like weather, traffic, etc. Python script analyzes current car position and nearest road nodes to drive using different paths to cover all possible actions and car positions as best as possible. This is important for further seamless experience with player "playing" the environment - it needs to output coherent and believable images.

Data collecting demo with visible road nodes (not included in the final training data): GANTheftAuto data collecting demo

(click to watch on YouTube)

As mentioned above, we can't share our data collecting scripts, but we are providing sample dataset. If you believe you have a model that has interesting results, feel free to reach out and we may try to train it on the full dataset.

You can also create your own dataset by recording frames and actions at 10 FPS. Save format is gzipped pickle file containing a dictionary of 'actions' and 'observations'. Actions are a single-dimensional NumPy array of 0 (left), 1 (straight) and 2 (right), while observations are a four-dimensional array where the first dimension are samples, and the other are (48, 80, 3) - RGB image size. Ungzip and unpickle example sample from the sample dataset to learn more about the data structure. Each file should contain a single sequence length of at least 32 frames.

Example train script is available at scripts/gtav_multi.sh (as well as its .bat version).

Vroom environment

Vroom is our own environment based on the OpenmAI Gym's Box2D CarRacing environment, but this one does not require Gym to run. Its only dependencies are OpenCV and NumPy.

Example track with a slice of what's actually saved as a training data:

GANTheftAuto - Vroom data

(blue, red and purple lines are shown for visualization purposes only and are not a part of the training data)

Example model output (we've never hunted for best possible output and switch to GTAV instead): GANTheftAuto - Vroom playing

We are including the data collecting script - a simple AI (DumbAI) is playing the environment to collect the data. The car is "instructed" to follow the road, with additional constantly changing offset from the center of teh road, turns and u-turns to cover all possible scenarios.

To run the data collector:

  • Install dependencies
    cd data/vroom
    pip3 install - requirements.txt
    
  • Edit collect_data.py if you need to change any defaults
  • Run the data extraction
    python3 collect_data.py
    

NEAT-Cartpole

This environment is created with OpenAI Gym's Cartpole. However, the data collecting part is unattended as we are first training the NEAT algoritm to play it, then collect data generated this way.

Warning: recently we've discovered a possible issue with this environment causing actions to alternate between a direction and no action. As for now we have no fix for this environment, so your model results are highly likely to not be very useful. We'd recommend trying to build your own agent to play cartpole instead of a NEAT bot.

To run the data collector:

  • Install dependencies
    cd data/cartpole
    pip3 install - requirements.txt
    
  • Edit neat_cartpole.py and update constants (at the bottom of the script) to your needs
  • Run the data extraction
    python3 neat_cartpole.py
    

Training

We provide training scripts in './scripts'.

GTA V

  • For training the full GameGAN model, run:
    ./scripts/gtav_multi.sh
    

Vroom

  • For training the full GameGAN model, run:
    ./scripts/vroom_multi.sh
    

NEAT-Cartpole

  • For training the full GameGAN model, run:
    ./scripts/cartpole_multi.sh
    

Monitoring

  • You can monitor the training process with tensorboard:
    tensorboard --logdir=./results
    

Inference

Inference is currently unfinished - can be ran, but actions are randomly generated instead of taken from the user input. We'll finish it up shortly.

Vroom

Edit scripts/gtav_inference.sh and update the model filename, then run:

./scripts/gtav_inference.sh

Vroom

Edit scripts/cartpole_inference.sh and update the model filename, then run:

./scripts/cartpole_inference.sh

NEAT-Cartpole

Edit scripts/cartpole_inference.sh and update the model filename, then run:

./scripts/cartpole_inference.sh

Parts of the Original Nvidia's GameGAN readme

(head to the GameGAN for a full version)

This part describes the VidDom environment which we did not use in our work. The repository also contains Pac Man environment which have been never described and no data collection scrpts were provided.

Dataset extraction

Please clone and follow https://github.com/hardmaru/WorldModelsExperiments/tree/master/doomrnn to install the VizDoom environment.

  • Copy extraction scripts and run
cp data/extract.py DOOMRNN_DIR/
cp data/extract_data.sh DOOMRNN_DIR/
cd DOOMRNN_DIR
./extract_data.sh
  • Now, extracted data is saved in 'DOOMRNN_DIR/vizdoom_skip3'
cd GameGAN_code/data
python dataloader.py DOOMRNN_DIR/vizdoom_skip3 vizdoom
  • You should now see .npy files extracted in 'data/vizdoom' directory.

For custom datasets, you can construct .npy files that contain a sequence of image and action pairs and define a dataloader similar to 'class vizdoom_dataset'. Please refer to 'data/dataloder.py'.

-- The above repository is deprecated and VizDoom environment might not run correctly in certain systems. In that case, you can use the docker installtaion of https://github.com/zacwellmer/WorldModels and copy the extraction scripts in the docker environment.

Training

We provide training scripts in './scripts'.

  • For training the full GameGAN model, run:
./scripts/vizdoom_multi.sh
  • For training the GameGAN model without the external memory module, run:
./scripts/vizdoom_single.sh

Monitoring

  • You can monitor the training process with tensorboard:
tensorboard --port=PORT --logdir=./results

Tips

  • Different environments might need different hyper-parameters. The most important hyper-parameter is 'recon_loss_multiplier' in 'config.py', which usually works well with 0.001 ~ 0.05.
  • Environments that do not need long-term consistency usually works better without the external memory module
Owner
Harrison
Harrison
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022