MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

Overview

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

This repository contains the implementation of our paper MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please cite:

@InProceedings{MetaAvatar:NeurIPS:2021,
  title = {MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images},
  author = {Shaofei Wang and Marko Mihajlovic and Qianli Ma and Andreas Geiger and Siyu Tang},
  booktitle = {Advances in Neural Information Processing Systems},
  year = {2021}
}

Installation

This repository has been tested on the following platform:

  1. Python 3.7, PyTorch 1.7.1 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04

To clone the repo, run either:

git clone --recursive https://github.com/taconite/MetaAvatar-release.git

or

git clone https://github.com/taconite/MetaAvatar-release.git
git submodule update --init --recursive

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called meta-avatar using

conda env create -f environment.yml
conda activate meta-avatar

(Optional) if you want to use the evaluation code under evaluation/, then you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

Build the dataset

To prepare the dataset for training/fine-tuning/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

(Optional) if you want to use the evaluation code under evaluation/, then you need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/.

Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/fine-tuning/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

(Optional) if you want evaluate performance on interpolation task, then you need to process CAPE data again in order to generate processed data at full framerate. Simply comment the first command and uncomment the second command in preprocess/build_dataset.sh and run the script.

Pre-trained models

We provide pre-trained models, including 1) forward/backward skinning networks for full pointcloud (stage 0) 2) forward/backward skinning networks for depth pointcloud (stage 0) 3) meta-learned static SDF (stage 1) 3) meta-learned hypernetwork (stage 2) . After downloading them, please put them in respective folders under ./out/metaavatar.

Fine-tuning fromt the pre-trained model

We provide script to fine-tune subject/cloth-type specific avatars in batch. Simply run:

bash run_fine_tuning.sh

And it will conduct fine-tuning with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

Training

To train new networks from scratch, run

python train.py --num-workers 8 configs/meta-avatar/${config}.yaml

You can train the two stage 0 models in parallel, while stage 1 model depends on stage 0 models and stage 2 model depends on stage 1 model.

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

Evaluation

To evaluate the generated meshes, use the following script:

bash run_evaluation.sh

Again, it will conduct evaluation with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

License

We employ MIT License for the MetaAvatar code, which covers

extract_smpl_parameters.py
run_fine_tuning.py
train.py
configs
jobs/
depth2mesh/
preprocess/

The SIREN networks are borrowed from the official SIREN repository. Mesh extraction code is borrowed from the DeeSDF repository.

Modules not covered by our license are:

  1. Modified code from IP-Net (./evaluation);
  2. Modified code from SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022