Alignment Attention Fusion framework for Few-Shot Object Detection

Overview

AAF framework

Framework generalities

This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is to propose a flexible framework to implement various attention mechanisms for Few-Shot Object Detection. The framework is composed of 3 different modules: Spatial Alignment, Global Attention and Fusion Layer, which are applied successively to combine features from query and support images.

The inputs of the framework are:

  • query_features List[Tensor(B, C, H, W)]: Query features at different levels. For each level, the features are of shape Batch x Channels x Height x Width.
  • support_features List[Tensor(N, C, H', W')] : Support features at different level. First dimension correspond to the number of support images, regrouped by class: N = N_WAY * K_SHOT.
  • support_targets List[BoxList] bounding boxes for object in each support image.

The framework can be configured using a separate config file. Examples of such files are available under /config_files/aaf_framework/. The structure of these files is simple:

ALIGN_FIRST: #True/False Run Alignment before Attention when True
OUT_CH: # Number of features output by the fusion layer
ALIGNMENT:
    MODE: # Name of the alignment module selected
ATTENTION:
    MODE: # Name of the attention module selected
FUSION:
    MODE: # Name of the fusion module selected
File name Method Alignment Attention Fusion
identity.yaml Identity IDENTITY IDENTITY IDENTITY
feature_reweighting.yaml FSOD via feature reweighting IDENTITY REWEIGHTING_BATCH IDENTITY
meta_faster_rcnn.yaml Meta Faster-RCNN SIMILARITY_ALIGN META_FASTER META_FASTER
self_adapt.yaml Self-adaptive attention for FSOD IDENTITY_NO_REPEAT GRU IDENTITY
dynamic.yaml Dynamic relevance learning IDENTITY INTERPOLATE DYNAMIC_R
dana.yaml Dual Awarness Attention for FSOD CISA BGA HADAMARD

The path to the AAF config file should be specified inside the master config file (i.e. for the whole network) under FEWSHOT.AAF.CFG.

For each module, classes implementing the available choices are regrouped under a single file: /modelling/aaf/alignment.py, /modelling/aaf/attention.py and /modelling/aaf/fusion.py.

Spatial Alignment

Spatial Alignment reorganizes spatially the features of one feature map to match another one. The idea is to align similar features in both maps so that comparison is easier.

Name Description
IDENTITY Repeats the feature to match BNCHW and NBCHW dimensions
IDENTITY_NO_REPEAT Identity without repetition
SIMILARITY_ALIGN Compute similarity matrix between support and query and align support to query accordingly.
CISA CISA block from this method

### Global Attention Global Attention highlights some features of a map accordingly to an attention vector computed globally on another one. The idea is to leverage global and hopefully semantic information.

Name Description
IDENTITY Simply pass features to next modules.
REWEIGHTING Reweights query features using globally pooled vectors from support.
REWEIGHTING_BATCH Same as above but support examples are the same for the whole batch.
SELF_ATTENTION Same as above but attention vectors are computed from the alignment matrix between query and support.
BGA BGA blocks from this method
META_FASTER Attention block from this method
POOLING Pools query and support features to the same size.
INTERPOLATE Upsamples support features to match query size.
GRU Computes attention vectors through a graph representation using a GRU.

Fusion Layer

Combine directly the features from support and query. These maps must be of the same dimension for point-wise operation. Hence fusion is often employed along with alignment.

Name Description
IDENTITY Returns onlu adapted query features.
ADD Point-wise sum between query and support features.
HADAMARD Point-wise multiplication between query and support features.
SUBSTRACT Point-wise substraction between query and support features.
CONCAT Channel concatenation of query and support features.
META_FASTER Fusion layer from this method
DYNAMIC_R Fusion layer from this method

Training and evaluation

Training and evaluation scripts are available.

TODO: Give code snippet to run training with a specified config file (modify main) Basically create 2 scripts train.py and eval.py with arg config file.

DataHandler

Explain DataHandler class a bit.

Installation

Dependencies used for this projects can be installed through conda create --name <env> --file requirements.txt. Please note that these requirements are not all necessary and it will be updated soon.

FCOS must be installed from sources. But there might be some issue after installation depending on the version of the python packages you use.

  • cpu/vision.h file not found: replace all occurences in the FCOS source by vision.h (see this issue).
  • Error related to AT_CHECK with pytorch > 1.5 : replace all occurences by TORCH_CHECK (see this issue.
  • Error related to torch._six.PY36: replace all occurence of PY36 by PY37.

Results

Results on pascal VOC, COCO and DOTA.

Owner
Pierre Le Jeune
PhD Student in Few-shot object detection.
Pierre Le Jeune
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020