Complete system for facial identity system

Overview

Facial Identity system

⭐️ ⭐️ This repo is still updating

Introduction

This project is to utilize facial recognition to create a facial identity system. Our backend is constructed by one-shot models which is more flexible for adding a new face. The system is built on personal computer and Jetson Nano. Jetson Nano is used to recognized the faces and upload the detected information to Firebase. Users who used our application with account and password can log in to control the database and also see the information.

Folder structure

| - backend - For Personal computer
|
| - csv_file - Contribution for the CelebA dataset
|
| - jetson - Files for Jetson Nano
|
| - model - Model we used for training and detecting

Features

Our facial identity system includes below features:

  • One-shot face recognition, add your faces without extra training
  • Complete database operation (upload, delete, update)
  • Fine-tuned your model at any time
  • Use as a monitor
  • Visualize the features

Installation

Personal computer

$ pip install -r requirements.txt

Jetson Nano

$ pip install -r requirements.txt

Increase swap space on Jetson Nano (Optional)

Our nano would crush when using cuda until we increase its swap memory 🥳

> /etc/fstab'">
# 4.0G is the swap space
$ sudo fallocate -l 4.0G /swapfile
$ sudo chmod 600 /swapfile
$ sudo mkswap /swapfile
$ sudo swapon /swapfile

# Create swap memory on every reboot
$ sudo bash -c 'echo "/var/swapfile swap swap defaults 0 0" >> /etc/fstab'

Experiments

Result for real-time training

Type Original New
Cosine Similarity Positive 0.9889 0.9863
Negative 0.7673 0.6695
L2 Distance Positive 0.1491 0.1655
Negative 0.6822 0.8130

Run time using different methods

  • second per image (s / img)
CPU (Pytorch) Cuda (Pytorch) ONNX TensorRT
4.11s 75.329s 0.1260s 1.975s

It is surprising that cuda consumes lots of time. We guess it is because cuda rely on huge amount of swap memory that slow down its runtime 😢 .

Contribution to CelebA

In order to train one-shot model, we obtain the face's coordinates beforehand. All files are placed in csv_file.

The coordinates were obtained from facenet-pytorch

File name Description
id_multiple.csv To ensure each celebrity have at least two images (For positive usage).
cropped.csv Include the face's coordinates and ensure each celebrity has at least two images.

Citation

@inproceedings{liu2015faceattributes,
  title = {Deep Learning Face Attributes in the Wild},
  author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
  booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
  month = {December},
  year = {2015} 
}

@inproceedings{koch2015siamese,
  title={Siamese neural networks for one-shot image recognition},
  author={Koch, Gregory and Zemel, Richard and Salakhutdinov, Ruslan and others},
  booktitle={ICML deep learning workshop},
  volume={2},
  year={2015},
  organization={Lille}
}

@inproceedings{chen2020simple,
  title={A simple framework for contrastive learning of visual representations},
  author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey},
  booktitle={International conference on machine learning},
  pages={1597--1607},
  year={2020},
  organization={PMLR}
}

@inproceedings{schroff2015facenet,
  title={Facenet: A unified embedding for face recognition and clustering},
  author={Schroff, Florian and Kalenichenko, Dmitry and Philbin, James},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={815--823},
  year={2015}
}
You might also like...
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

The world's simplest facial recognition api for Python and the command line
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial muscle movements (e.g., action units), and facial landmarks, from videos and images of faces, as well as methods to preprocess, analyze, and visualize FEX data.

Instant Real-Time Example-Based Style Transfer to Facial Videos
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

Releases(weight)
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022