IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

Overview

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具

2022.2.8 添加、修改内容

增加备份文件fuzz规则

修改备份文件大小判断方式(pip3 install hurry-filesize)

修改备份文件是否存在的判断规则

修改为多线程扫描,内存占用更小

经测试 1h1g vps 500线程可以拉满

python3 ihoneyBakFileScan_Modify.py -t 500 -f url.txt

python3 requests pip3.5

1. 简介

1.1 网站备份文件泄露可能造成的危害:
1. 网站存在备份文件:网站存在备份文件,例如数据库备份文件、网站源码备份文件等,攻击者利用该信息可以更容易得到网站权限,导致网站被黑。
2. 敏感文件泄露是高危漏洞之一,敏感文件包括数据库配置信息,网站后台路径,物理路径泄露等,此漏洞可以帮助攻击者进一步攻击,敞开系统的大门。
3. 由于目标备份文件较大(xxx.G),可能存在更多敏感数据泄露
4. 该备份文件被下载后,可以被用来做代码审计,进而造成更大的危害
5. 该信息泄露会暴露服务器的敏感信息,使攻击者能够通过泄露的信息进行进一步入侵。
1.2 依赖环境
开发环境:
python3   python3.5.3
pip3.5    pip 10.0.1
requests  2.19.1
安装第三方依赖库:
pip3.5 install requests
pip3 install hurry-filesize
1.3 工具核心:
1. 常见后缀:
   * '.rar', '.zip', '.gz', '.sql.gz', '.tar.gz' ...
2. 文件头识别:
   * rar:526172211a0700cf9073
   * zip:504b0304140000000800
   * gz:1f8b080000000000000b,也包括'.sql.gz',取'1f8b0800' 作为keyword
   * tar.gz: 1f8b0800
   * sql:每种导出方式有不同的文件头
       * Adminer:  
       * mysqldump:     
       * phpMyAdmin:
       * navicat:   
3. 数据库备份导出方式识别:
   * 导出方式                      文件头字符:                    前10个16进制字符:
   * mysqldump:                   -- MySQL dump:               2d2d204d7953514c
   * phpMyAdmin:                  -- phpMyAdmin SQL Dump:      2d2d207068704d794164
   * navicat:                     /* Navicat :                 2f2a0a204e617669636174
   * Adminer:                     -- Adminer x.x.x MySQL dump: 2d2d2041646d696e6572  (5月9日新增xxx.sql)
   * Navicat MySQL Data Transfer: /* Navicat:                  2f2a0a4e617669636174
   * 一种未知导出方式:               -- -------:                  2d2d202d2d2d2d2d2d2d
4. 根据域名自动生成相关扫描字典:
    ➜  ihoneyBakFileScan python3.5 ihoneyBakFileScan.py -u https://www.ihoney.net.cn
    [ ] https://www.ihoney.net.cn/__zep__/js.zip
    [ ] https://www.ihoney.net.cn/faisunzip.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/www.rar
    [ ] https://www.ihoney.net.cn/ihoney.rar
    [*] https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.zip
    [ ] https://www.ihoney.net.cn/www.zip
    [ ] https://www.ihoney.net.cn/ihoney.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/www.gz
    [ ] https://www.ihoney.net.cn/ihoney.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/www.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.sql.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/www.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.tar.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/www.sql
    [ ] https://www.ihoney.net.cn/ihoney.sql
5. 自动记录扫描成功的备份地址到以时间命名的文件
    例如 20180616_16-28-14.txt:
    https://www.ihoney.net.cn/ihoney.tar.gz  size:0M
    https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M

2. 使用方式

参数:
    -h --help      查看工具使用帮助
    -f --url-file  批量时指定存放url的文件,每行url需要指定http://或者https://,否则默认使用http://
    -t --thread    指定线程数,建议100
    -u --url       单个url扫描时指定url
    -d --dict-file 自定义扫描字典
使用:
    批量url扫描    python3.5 ihoneyBakFileScan.py -t 100 -f url.txt
    单个url扫描    python3.5 ihoneyBakFileScan.py -u https://www.ihoneysec.top/
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn -d dict.txt

3. ChangeLog:

[2018.04.20]  首发T00ls:支持rar,zip后缀备份文件头识别,根据域名自动生成相关扫描字典,自动记录扫描成功的备份地址到文件
[2018.04.26]
              在原本扫描成功的备份地址后增加了备份大小,以方便快速识别有效备份。
              增加了.sql文件识别,也是识别文件头的方式,文件头我目前检测到三种,分别是不同方式导出的:1.mysql,2.phpmyadmin,3.navicat。
[2018.05.19]  新增识别Adminer导出的两种格式:baidu.sql、baodu.sql.gz
[2018.05.31]  新增Navicat MySQL Data Transfer备份导出方式和另一种未知导出方式
[2018.06.16]  修复支持https站扫描,并从旧项目中抽出来独立作为一个项目
[2018.06.18]  从多线程加队列改为多进程加进程池,提升扫描速度

4. 联系

* 在使用工具的过程中遇到任何异常、问题,或者你有更好的建议都可以联系作者,一起将这款不出名的小工具完善下去。
* 联系方式: QQ 102505481
2018年06月18日22:51:11
Owner
VMsec
专注渗透测试。
VMsec
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022