PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

Related tags

Deep LearningLFT
Overview

LFT

PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf].

Contributions:

  • We make the first attempt to adapt Transformers to LF image processing, and propose a Transformer-based network for LF image SR.
  • We propose a novel paradigm (i.e., angular and spatial Transformers) to incorporate angular and spatial information in an LF.
  • With a small model size and low computational cost, our LFT achieves superior SR performance than other state-of-the-art methods.

Codes and Models:

Requirement

  • PyTorch 1.3.0, torchvision 0.4.1. The code is tested with python=3.6, cuda=9.0.
  • Matlab (For training/test data generation and performance evaluation)

Datasets

We used the EPFL, HCInew, HCIold, INRIA and STFgantry datasets for both training and test. Please first download our dataset via Baidu Drive (key:7nzy) or OneDrive, and place the 5 datasets to the folder ./datasets/.

Train

  • Run Generate_Data_for_Training.m to generate training data. The generated data will be saved in ./data_for_train/ (SR_5x5_2x, SR_5x5_4x).
  • Run train.py to perform network training. Example for training LFT on 5x5 angular resolution for 4x/2xSR:
    $ python train.py --model_name LFT --angRes 5 --scale_factor 4 --batch_size 4
    $ python train.py --model_name LFT --angRes 5 --scale_factor 2 --batch_size 8
    
  • Checkpoint will be saved to ./log/.

Test

  • Run Generate_Data_for_Test.m to generate test data. The generated data will be saved in ./data_for_test/ (SR_5x5_2x, SR_5x5_4x).
  • Run test.py to perform network inference. Example for test LFT on 5x5 angular resolution for 4x/2xSR:
    python test.py --model_name LFT --angRes 5 --scale_factor 4 \ 
    --use_pre_pth True --path_pre_pth './pth/LFT_5x5_4x_epoch_50_model.pth
    
    python test.py --model_name LFT --angRes 5 --scale_factor 2 \ 
    --use_pre_pth True --path_pre_pth './pth/LFT_5x5_2x_epoch_50_model.pth
    
  • The PSNR and SSIM values of each dataset will be saved to ./log/.

Results:

  • Quantitative Results

  • Efficiency

  • Visual Comparisons

  • Angular Consistency

  • Spatial-Aware Angular Modeling


Citiation

If you find this work helpful, please consider citing:

@Article{LFT,
    author    = {Liang, Zhengyu and Wang, Yingqian and Wang, Longguang and Yang, Jungang and Zhou, Shilin},
    title     = {Light Field Image Super-Resolution with Transformers},
    journal   = {arXiv preprint},
    month     = {August},
    year      = {2021},   
}


Contact

Any question regarding this work can be addressed to [email protected].

Owner
Squidward
Squidward
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022