Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

Overview

WIBAM (Work in progress)

Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data

3D object detector trained on NuScenes only.

3D object detector trained on NuScenes only

3D object detector finetuned on the WIBAM dataset.

3D object detector finetuned on the WIBAM dataset

Description

This is the project code for WIBAM as presented in our paper:

WIBAM: Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data
Matthew Howe, Ian Reid, Jamie Mackenzie
In: Britich Machine Vision Conference (BMVC) 2021

The preprint paper is available here.

Accurate 7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users. In principle, this could be achieved by a single camera system that is capable of detecting the pose of each vehicle but this would require a large, accurately labelled dataset from which to train the detector. Although large vehicle pose datasets exist (ostensibly developed for autonomous vehicles), we find training on these datasets inadequate. These datasets contain images from a ground level viewpoint, whereas an ideal view for intersection observation would be elevated higher above the road surface. We develop an alternative approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras; showing in the process that large existing autonomous vehicle datasets can be leveraged for pre-training. To fine-tune the monocular 3D object detector, our method utilises multiple 2D detections from overlapping, wide-baseline views and a loss that encodes the subjacent geometric consistency. Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets. We present our training methodology, multi-view reprojection loss, and dataset.

Additional information about my thesis

Link to ARSC video

Replicate my results

Please see the how to run section. Inference can be achieved with a single GPU (~8GB VRAM). Training was done on either two Nvidia 3080s or 2 Nvidia V100s. (min ~40GB VRAM required).

Results

Citation

@article{WIBAM,
  title={Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data},
  author={Matthew Howe, Ian Reid, Jamie Mackenzie},
  journal={32nd British Machine Vision Conference, BMVC 2021},
  year={2021}
}

Acknowledgements

This repo is a modified clone of CenterTrack https://github.com/xingyizhou/CenterTrack. CenterTrack is developed upon CenterNet. Both codebases are released under MIT License themselves. Some code of CenterNet are from third-parties with different licenses, please check the CenterNet repo for details. In addition, this repo uses py-motmetrics for MOT evaluation and nuscenes-devkit for nuScenes evaluation and preprocessing. See NOTICE for detail. Please note the licenses of each dataset. Most of the datasets we used in this project are under non-commercial licenses.

This research has been supported through the Australian Government Research Training Program Scholarship. High performance compute resources used in this work were funded by the Australian Research Council via LE190100080.

Owner
Matthew Howe
Mechatronic Engineering Student
Matthew Howe
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021