Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

Overview

BasicVSR_PlusPlus (CVPR 2022)

[Paper] [Project Page] [Code]

This is the official repository for BasicVSR++. Please feel free to raise issue related to BasicVSR++! If you are also interested in RealBasicVSR, which is also accepted to CVPR 2022, please don't hesitate to star!

Authors: Kelvin C.K. Chan, Shangchen Zhou, Xiangyu Xu, Chen Change Loy, Nanyang Technological University

Acknowedgement: Our work is built upon MMEditing. Please follow and star this repository and MMEditing!

News

  • 2 Dec 2021: Colab demo released google colab logo
  • 18 Apr 2022: Code released. Also merged into MMEditing

TODO

  • Add data processing scripts
  • Add checkpoints for deblur and denoise
  • Add configs for deblur and denoise
  • Add Colab demo

Pre-trained Weights

You can find the pre-trained weights for deblurring and denoising in this link. For super-resolution and compressed video enhancement, please refer to MMEditing.

Installation

  1. Install PyTorch
  2. pip install openmim
  3. mim install mmcv-full
  4. git clone https://github.com/ckkelvinchan/BasicVSR_PlusPlus.git
  5. cd BasicVSR_PlusPlus
  6. pip install -v -e .

Inference a Video

  1. Download pre-trained weights
  2. python demo/restoration_video_demo.py ${CONFIG} ${CHKPT} ${IN_PATH} ${OUT_PATH}

For example, you can download the VSR checkpoint here to chkpts/basicvsr_plusplus_reds4.pth, then run

python demo/restoration_video_demo.py configs/basicvsr_plusplus_reds4.py chkpts/basicvsr_plusplus_reds4.pth data/demo_000 results/demo_000

You can also replace ${IN_PATH} ${OUT_PATH} by your video path (e.g., xxx/yyy.mp4) to input/output videos.

Training Models

  1. Put the dataset in the designated locations specified in the configuration file.
  2. sh tools/dist_train.sh ${CONFIG} ${NGPUS}

Data Preprocessing

To be added...

Related Work

Our BasicVSR series:

  1. BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond, CVPR 2021
  2. Investigating Tradeoffs in Real-World Video Super-Resolution, CVPR 2022

More about deformable alignment:

Citations

@inproceedings{chan2022basicvsrpp,
  author = {Chan, Kelvin C.K. and Zhou, Shangchen and Xu, Xiangyu and Loy, Chen Change},
  title = {{BasicVSR++}: Improving video super-resolution with enhanced propagation and alignment},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
  year = {2022}
}
@article{chan2022generalization,
  title={On the Generalization of {BasicVSR++} to Video Deblurring and Denoising},
  author={Chan, Kelvin CK and Zhou, Shangchen and Xu, Xiangyu and Loy, Chen Change},
  journal={arXiv preprint arXiv:2204.05308},
  year={2022}
}
Owner
Kelvin C.K. Chan
Kelvin C.K. Chan
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022