An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

Overview

CyberBattleSim

April 8th, 2021: See the announcement on the Microsoft Security Blog.

CyberBattleSim is an experimentation research platform to investigate the interaction of automated agents operating in a simulated abstract enterprise network environment. The simulation provides a high-level abstraction of computer networks and cyber security concepts. Its Python-based Open AI Gym interface allows for the training of automated agents using reinforcement learning algorithms.

The simulation environment is parameterized by a fixed network topology and a set of vulnerabilities that agents can utilize to move laterally in the network. The goal of the attacker is to take ownership of a portion of the network by exploiting vulnerabilities that are planted in the computer nodes. While the attacker attempts to spread throughout the network, a defender agent watches the network activity and tries to detect any attack taking place and mitigate the impact on the system by evicting the attacker. We provide a basic stochastic defender that detects and mitigates ongoing attacks based on pre-defined probabilities of success. We implement mitigation by re-imaging the infected nodes, a process abstractly modeled as an operation spanning over multiple simulation steps.

To compare the performance of the agents we look at two metrics: the number of simulation steps taken to attain their goal and the cumulative rewards over simulation steps across training epochs.

Project goals

We view this project as an experimentation platform to conduct research on the interaction of automated agents in abstract simulated network environments. By open-sourcing it, we hope to encourage the research community to investigate how cyber-agents interact and evolve in such network environments.

The simulation we provide is admittedly simplistic, but this has advantages. Its highly abstract nature prohibits direct application to real-world systems thus providing a safeguard against potential nefarious use of automated agents trained with it. At the same time, its simplicity allows us to focus on specific security aspects we aim to study and quickly experiment with recent machine learning and AI algorithms.

For instance, the current implementation focuses on the lateral movement cyber-attacks techniques, with the hope of understanding how network topology and configuration affects them. With this goal in mind, we felt that modeling actual network traffic was not necessary. This is just one example of a significant limitation in our system that future contributions might want to address.

On the algorithmic side, we provide some basic agents as starting points, but we would be curious to find out how state-of-the-art reinforcement learning algorithms compare to them. We found that the large action space intrinsic to any computer system is a particular challenge for Reinforcement Learning, in contrast to other applications such as video games or robot control. Training agents that can store and retrieve credentials is another challenge faced when applying RL techniques where agents typically do not feature internal memory. These are other areas of research where the simulation could be used for benchmarking purposes.

Other areas of interest include the responsible and ethical use of autonomous cyber-security systems: How to design an enterprise network that gives an intrinsic advantage to defender agents? How to conduct safe research aimed at defending enterprises against autonomous cyber-attacks while preventing nefarious use of such technology?

Documentation

Read the Quick introduction to the project.

Build status

Type Branch Status
CI master .github/workflows/ci.yml
Docker image master .github/workflows/build-container.yml

Benchmark

See Benchmark.

Setting up a dev environment

It is strongly recommended to work under a Linux environment, either directly or via WSL on Windows. Running Python on Windows directly should work but is not supported anymore.

Start by checking out the repository:

git clone https://github.com/microsoft/CyberBattleSim.git

On Linux or WSL

The instructions were tested on a Linux Ubuntu distribution (both native and via WSL). Run the following command to set-up your dev environment and install all the required dependencies (apt and pip packages):

./init.sh

The script installs python3.8 if not present. If you are running a version of Ubuntu older than 20, it will automatically add an additional apt repository to install python3.8.

The script will create a virtual Python environment under a venv subdirectory, you can then run Python with venv/bin/python.

Note: If you prefer Python from a global installation instead of a virtual environment then you can skip the creation of the virtual environment by running the script with ./init.sh -n. This will instead install all the Python packages on a system-wide installation of Python 3.8.

Windows Subsystem for Linux

The supported dev environment on Windows is via WSL. You first need to install an Ubuntu WSL distribution on your Windows machine, and then proceed with the Linux instructions (next section).

Git authentication from WSL

To authenticate with Git, you can either use SSH-based authentication or alternatively use the credential-helper trick to automatically generate a PAT token. The latter can be done by running the following command under WSL (more info here):

git config --global credential.helper "/mnt/c/Program\ Files/Git/mingw64/libexec/git-core/git-credential-manager.exe"

Docker on WSL

To run your environment within a docker container, we recommend running docker via Windows Subsystem on Linux (WSL) using the following instructions: Installing Docker on Windows under WSL).

Windows (unsupported)

This method is not maintained anymore, please prefer instead running under a WSL subsystem Linux environment. But if you insist you want to start by installing Python 3.8 then in a Powershell prompt run the ./init.ps1 script.

Getting started quickly using Docker

The quickest method to get up and running is via the Docker container.

NOTE: For licensing reasons, we do not publicly redistribute any build artifact. In particular, the docker registry spinshot.azurecr.io referred to in the commands below is kept private to the project maintainers only.

As a workaround, you can recreate the docker image yourself using the provided Dockerfile, publish the resulting image to your own docker registry and replace the registry name in the commands below.

Running from Docker registry

commit=7c1f8c80bc53353937e3c69b0f5f799ebb2b03ee
docker login spinshot.azurecr.io
docker pull spinshot.azurecr.io/cyberbattle:$commit
docker run -it spinshot.azurecr.io/cyberbattle:$commit cyberbattle/agents/baseline/run.py

Recreating the Docker image

docker build -t cyberbattle:1.1 .
docker run -it -v "$(pwd)":/source --rm cyberbattle:1.1 cyberbattle/agents/baseline/run.py

Check your environment

Run the following command to run a simulation with a baseline RL agent:

python cyberbattle/agents/baseline/run.py --training_episode_count 1 --eval_episode_count 1 --iteration_count 10 --rewardplot_with 80  --chain_size=20 --ownership_goal 1.0

If everything is setup correctly you should get an output that looks like this:

torch cuda available=True
###### DQL
Learning with: episode_count=1,iteration_count=10,ϵ=0.9,ϵ_min=0.1, ϵ_expdecay=5000,γ=0.015, lr=0.01, replaymemory=10000,
batch=512, target_update=10
  ## Episode: 1/1 'DQL' ϵ=0.9000, γ=0.015, lr=0.01, replaymemory=10000,
batch=512, target_update=10
Episode 1|Iteration 10|reward:  139.0|Elapsed Time: 0:00:00|###################################################################|
###### Random search
Learning with: episode_count=1,iteration_count=10,ϵ=1.0,ϵ_min=0.0,
  ## Episode: 1/1 'Random search' ϵ=1.0000,
Episode 1|Iteration 10|reward:  194.0|Elapsed Time: 0:00:00|###################################################################|
simulation ended
Episode duration -- DQN=Red, Random=Green
   10.00  ┼
Cumulative rewards -- DQN=Red, Random=Green
  194.00  ┼      ╭──╴
  174.60  ┤      │
  155.20  ┤╭─────╯
  135.80  ┤│     ╭──╴
  116.40  ┤│     │
   97.00  ┤│    ╭╯
   77.60  ┤│    │
   58.20  ┤╯ ╭──╯
   38.80  ┤  │
   19.40  ┤  │
    0.00  ┼──╯

Jupyter notebooks

To quickly get familiar with the project, you can open one of the provided Jupyter notebooks to play interactively with the gym environments. Just start jupyter with jupyter notebook, or venv/bin/jupyter notebook if you are using a virtual environment setup.

How to instantiate the Gym environments?

The following code shows how to create an instance of the OpenAI Gym environment CyberBattleChain-v0, an environment based on a chain-like network structure, with 10 nodes (size=10) where the agent's goal is to either gain full ownership of the network (own_atleast_percent=1.0) or break the 80% network availability SLA (maintain_sla=0.80), while the network is being monitored and protected by the basic probalistically-modelled defender (defender_agent=ScanAndReimageCompromisedMachines):

import cyberbattle._env.cyberbattle_env

cyberbattlechain_defender =
  gym.make('CyberBattleChain-v0',
      size=10,
      attacker_goal=AttackerGoal(
          own_atleast=0,
          own_atleast_percent=1.0
      ),
      defender_constraint=DefenderConstraint(
          maintain_sla=0.80
      ),
      defender_agent=ScanAndReimageCompromisedMachines(
          probability=0.6,
          scan_capacity=2,
          scan_frequency=5))

To try other network topologies, take example on chainpattern.py to define your own set of machines and vulnerabilities, then add an entry in the module initializer to declare and register the Gym environment.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Ideas for contributions

Here are some ideas on how to contribute: enhance the simulation (event-based, refined the simulation, …), train an RL algorithm on the existing simulation, implement benchmark to evaluate and compare novelty of agents, add more network generative modes to train RL-agent on, contribute to the doc, fix bugs.

See also the wiki for more ideas.

Citing this project

@misc{msft:cyberbattlesim,
  Author = {Microsoft Defender Research Team.}
  Note = {Created by Christian Seifert, Michael Betser, William Blum, James Bono, Kate Farris, Emily Goren, Justin Grana, Kristian Holsheimer, Brandon Marken, Joshua Neil, Nicole Nichols, Jugal Parikh, Haoran Wei.},
  Publisher = {GitHub},
  Howpublished = {\url{https://github.com/microsoft/cyberbattlesim}},
  Title = {CyberBattleSim},
  Year = {2021}
}

Note on privacy

This project does not include any customer data. The provided models and network topologies are purely fictitious. Users of the provided code provide all the input to the simulation and must have the necessary permissions to use any provided data.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023