Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

Overview

CI Publish Docker Cloud Build Status ✔️ Linux ✔️ OS X Windows (#39)

Uptime Robot status Twitter Follow

Welcome to graph-app-kit

Turn your graph data into a secure and interactive visual graph app in 15 minutes!

Screenshot

Why

This open source effort puts together patterns the Graphistry team has reused across many graph projects as teams go from code-heavy Jupyter notebook experiments to deploying streamlined analyst tools. Whether building your first graph app, trying an idea, or wanting to check a reference, this project aims to simplify that process. It covers pieces like: Easy code editing and deployment, a project stucture ready for teams, built-in authentication, no need for custom JS/CSS at the start, batteries-included data + library dependencies, and fast loading & visualization of large graphs.

What

  • Minimal core: The barebones dashboard server. In provides a StreamLit docker-compose container with PyData ecosystem libraries and examples of visualizing data from various systems. Install it, plug in credentials to various web services like cloud databases and a free Graphistry Hub visualization account, and launch.

  • Full core: Initially for AWS, the full core bundles adds to the docker-compose system: Accounts, Jupyter notebooks for authoring, serves StreamLit dashboards with both public + private zones, and runs Graphistry/RAPIDS locally on the same server. Launch with on click via the Cloud Formation template.

  • Full core + DB: DB-specific variants are the same as minimal/full, and add simpler DB-specific quick launching/connecting.

Get started

Quick (Local code) - minimal core + third-party connectors

# Minimal core
git clone https://github.com/graphistry/graph-app-kit.git
cd graph-app-kit/src/docker
sudo docker-compose build

# Optional: Edit src/docker/.env (API accounts), docker-compose.yml: Auth, ports, ...

# Launch
sudo docker-compose up -d
sudo docker-compose logs -f -t --tail=100

=> http://localhost:8501/

To add views and relaunch:

# Add dashboards @ src/python/views/<your_custom_view>/__init__.py

sudo docker-compose up -d --force-recreate

Quick Launchers - minimal/full core

  1. Quick launch options:

Full: Launch Stack

  • Public + protected Streamlit dashboards, Jupyter notebooks + editing, Graphistry, RAPIDS
  • Login to web UI as admin / i-instanceid -> file uploader, notebooks, ...
  • Dashboards: /public/dash and /private/dash
  • More info

Admin:

# launch logs
tail -f /var/log/cloud-init-output.log -n 1000

# app logs
sudo docker ps
sudo docker logs -f -t --tail=1 MY_CONTAINER

# restart a graphistry container
cd graphistry && sudo docker-compose restart MY_CONTAINER

# restart caddy (Caddy 1 override)
cd graphistry && sudo docker-compose -f docker-compose.gak.graphistry.yml up -d caddy

# run streamlit
cd graph-app-kit/public/graph-app-kit && docker-compose -p pub run -d --name streamlit-pub streamlit
cd graph-app-kit/private/graph-app-kit && docker-compose -p priv run -d --name streamlit-priv streamlit

Minimal: Open Streamlit, ssh to connect/add free Graphistry Hub username/pass:

Database-specific: Amazon Neptune, TigerGraph

  1. Add views

  2. Main configurations and extensions: Database connectors, authentication, notebook-based editing, and more

The pieces

Core

  • Prebuilt Python project structure ready for prototyping
  • Streamlit quick self-serve dashboarding
  • Graphistry point-and-click GPU-accelerated visual graph analytics
  • Data frames: Data wrangling via Pandas, Apache Arrow, RAPIDS (ex: cuDF), including handling formats such as CSV, XLS, JSON, Parquet, and more
  • Standard Docker and docker-compose cross-platform deployment

GPU acceleration (optional)

If GPUs are present, graph-app-kit leverages GPU cloud acceleration:

  • GPU Analytics: RAPIDS and CUDA already setup for use if run with an Nvidia docker runtime - cudf GPU dataframes, BlazingSQL GPU SQL, cuGraph GPU graph algorithms, cuML libraries, and more

  • GPU Visualization: Connect to an external Graphistry server or, faster, run on the same GPU server

Prebuilt integrations & recipes

graph-app-kit works well with the Python data ecosystem (pandas, cudf, PySpark, SQL, ...) and we're growing the set of builtins and recipes:

Contribute

We welcome all sorts of help!

  • Deployment: Docker, cloud runners, ...
  • Dependencies: Common graph packages
  • Connectors: Examples for common databases and how to get a lot of data out
  • Demos!

See develop.md for more contributor information

Owner
Graphistry
Visualize magnitudes more data in the browser.
Graphistry
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023