Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

Overview

MotionCLIP

Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space".

Please visit our webpage for more details.

teaser

Bibtex

If you find this code useful in your research, please cite:

@article{tevet2022motionclip,
title={MotionCLIP: Exposing Human Motion Generation to CLIP Space},
author={Tevet, Guy and Gordon, Brian and Hertz, Amir and Bermano, Amit H and Cohen-Or, Daniel},
journal={arXiv preprint arXiv:2203.08063},
year={2022}
}

Getting started

1. Create conda environment

conda env create -f environment.yml
conda activate motionclip

The code was tested on Python 3.8 and PyTorch 1.8.1.

2. Download data

Download and unzip the above datasets and place them correspondingly:

  • AMASS -> ./data/amass (Download the SMPL+H version for each dataset separately, please note to download ALL the dataset in AMASS website)
  • BABEL -> ./data/babel_v1.0_release
  • Rendered AMASS images -> ./data/render

3. Download the SMPL body model

bash prepare/download_smpl_files.sh

This will download the SMPL neutral model from this github repo and additionnal files.

In addition, download the Extended SMPL+H model (used in AMASS project) from MANO, and place it in ./models/smplh.

4. Parse data

Process the three datasets into a unified dataset with (text, image, motion) triplets.

To parse acording to the AMASS split (for all applications except action recognition), run:

python -m src.datasets.amass_parser --dataset_name amass

Only if you intend to use Action Recognition, run also:

python -m src.datasets.amass_parser --dataset_name babel

Using the pretrained model

First, download the model and place it at ./exps/paper-model

1. Text-to-Motion

To reproduce paper results, run:

 python -m src.visualize.text2motion ./exps/paper-model/checkpoint_0100.pth.tar --input_file assets/paper_texts.txt

To run MotionCLIP with your own texts, create a text file, with each line depicts a different text input (see paper_texts.txt as a reference) and point to it with --input_file instead.

2. Vector Editing

To reproduce paper results, run:

 python -m src.visualize.motion_editing ./exps/paper-model/checkpoint_0100.pth.tar --input_file assets/paper_edits.csv

To gain the input motions, we support two modes:

  • data - Retrieve motions from train/validation sets, according to their textual label. On it first run, src.visualize.motion_editing generates a file containing a list of all textual labels. You can look it up and choose motions for your own editing.
  • text - The inputs are free texts, instead of motions. We use CLIP text encoder to get CLIP representations, perform vector editing, then use MotionCLIP decoder to output the edited motion.

To run MotionCLIP on your own editing, create a csv file, with each line depicts a different edit (see paper_edits.csv as a reference) and point to it with --input_file instead.

3. Interpolation

To reproduce paper results, run:

 python -m src.visualize.motion_interpolation ./exps/paper-model/checkpoint_0100.pth.tar --input_file assets/paper_interps.csv

To gain the input motions, we use the data mode described earlier.

To run MotionCLIP on your own interpolations, create a csv file, with each line depicts a different interpolation (see paper_interps.csv as a reference) and point to it with --input_file instead.

4. Action Recognition

For action recognition, we use a model trained on text class names. Download and place it at ./exps/classes-model.

python -m src.utils.action_classifier ./exps/classes-model/checkpoint_0200.pth.tar

Train your own

NOTE (11/MAY/22): The paper model is not perfectly reproduced using this code. We are working to resolve this issue. The trained model checkpoint we provide does reproduce results.

To reproduce paper-model run:

python -m src.train.train --clip_text_losses cosine --clip_image_losses cosine --pose_rep rot6d \
--lambda_vel 100 --lambda_rc 100 --lambda_rcxyz 100 \
--jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 \
--lr 0.0001 --glob --translation --no-vertstrans --latent_dim 512 --num_epochs 500 --snapshot 10 \
--device <GPU DEVICE ID> \
--datapath ./data/amass_db/amass_30fps_db.pt \
--folder ./exps/my-paper-model

To reproduce classes-model run:

python -m src.train.train --clip_text_losses cosine --clip_image_losses cosine --pose_rep rot6d \
--lambda_vel 95 --lambda_rc 95 --lambda_rcxyz 95 \
--jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 \
--lr 0.0001 --glob --translation --no-vertstrans --latent_dim 512 --num_epochs 500 --snapshot 10 \
--device <GPU DEVICE ID> \
--datapath ./data/amass_db/babel_30fps_db.pt \
--folder ./exps/my-classes-model

Acknowledgment

The code of the transformer model and the dataloader are based on ACTOR repository.

License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including CLIP, SMPL, SMPL-X, PyTorch3D, and uses datasets which each have their own respective licenses that must also be followed.

Owner
Guy Tevet
CS PhD student
Guy Tevet
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022