[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Overview

Amplitude-Phase Recombination (ICCV'21)

Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain", Guangyao Chen, Peixi Peng, Li Ma, Jia Li, Lin Du, and Yonghong Tian.

Paper: https://arxiv.org/abs/2108.08487

Abstract: Recently, the generalization behavior of Convolutional Neural Networks (CNN) is gradually transparent through explanation techniques with the frequency components decomposition. However, the importance of the phase spectrum of the image for a robust vision system is still ignored. In this paper, we notice that the CNN tends to converge at the local optimum which is closely related to the high-frequency components of the training images, while the amplitude spectrum is easily disturbed such as noises or common corruptions. In contrast, more empirical studies found that humans rely on more phase components to achieve robust recognition. This observation leads to more explanations of the CNN's generalization behaviors in both adversarial attack and out-of-distribution detection, and motivates a new perspective on data augmentation designed by re-combing the phase spectrum of the current image and the amplitude spectrum of the distracter image. That is, the generated samples force the CNN to pay more attention on the structured information from phase components and keep robust to the variation of the amplitude. Experiments on several image datasets indicate that the proposed method achieves state-of-the-art performances on multiple generalizations and calibration tasks, including adaptability for common corruptions and surface variations, out-of-distribution detection and adversarial attack.

Highlights

Fig. 1: More empirical studies found that humans rely on more phase components to achieve robust recognition. However, CNN without effective training restrictions tends to converge at the local optimum related to the amplitude spectrum of the image, leading to generalization behaviors counter-intuitive to humans (the sensitive to various corruptions and the overconfidence of OOD). main hypothesis of the paper

Examples of the importance of phase spectrum to explain the counter-intuitive behavior of CNN

Fig. 2: Four pairs of testing sampless selected from in-distribution CIFAR-10 and OOD SVHN that help explain that CNN capture more amplitude specturm than phase specturm for classification: First, in (a) and (b), the model correctly predicts the original image (1st column in each panel), but the predicts are also exchanged after switching amplitude specturm (3rd column in each panel) while the human eye can still give the correct category through the contour information. Secondly, the model is overconfidence for the OOD samples in (c) and (d). Similarly, after the exchange of amplitude specturm, the label with high confidence is also exchanged.

Fig. 3: Two ways of the proposed Amplitude-Phase Recombination: APR-P and APR-S. Motivated by the powerful generalizability of the human, we argue that reducing the dependence on the amplitude spectrum and enhancing the ability to capture phase spectrum can improve the robustness of CNN.

Citation

If you find our work, this repository and pretrained adversarial generators useful. Please consider giving a star and citation.

@inproceedings{chen2021amplitude,
    title={Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain},
    author={Chen, Guangyao and Peng, Peixi and Ma, Li and Li, Jia and Du, Lin and Tian, Yonghong},
    booktitle={Proceedings of the IEEE International Conference on Computer Vision},
    year={2021}
}

1. Requirements

Environments

Currently, requires following packages

  • python 3.6+
  • torch 1.7.1+
  • torchvision 0.5+
  • CUDA 10.1+
  • scikit-learn 0.22+

Datasets

For even quicker experimentation, there is CIFAR-10-C and CIFAR-100-C. please download these datasets to ./data/CIFAR-10-C and ./data/CIFAR-100-C.

2. Training & Evaluation

To train the models in paper, run this command:

python main.py --aug <augmentations>

Option --aug can be one of None/APR-S. The default training method is APR-P. To evaluate the model, add --eval after this command.

APRecombination for APR-S and mix_data for APR-P can plug and play in other training codes.

3. Results

Fourier Analysis

The standard trained model is highly sensitive to additive noise in all but the lowest frequencies. APR-SP could substantially improve robustness to most frequency perturbations. The code of Heat maps is developed upon the following project FourierHeatmap.

ImageNet-C

  • Results of ResNet-50 models on ImageNet-C:
+(APR-P) +(APR-S) +(APR-SP) +DeepAugMent+(ARP-SP)
mCE 70.5 69.3 65.0 57.5
Owner
Guangyao Chen
Ph.D student @ PKU
Guangyao Chen
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023