Sum-Product Probabilistic Language

Overview

Actions Status pypi

Sum-Product Probabilistic Language

SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic inference queries. The language handles continuous, discrete, and mixed-type probability distributions; many-to-one numerical transformations; and a query language that includes general predicates on random variables.

Users express generative models as probabilistic programs with standard imperative constructs, such as arrays, if/else branches, for loops, etc. The program is then translated to a sum-product expression (a generalization of sum-product networks) that statically represents the probability distribution of all random variables in the program. This expression is used to deliver answers to probabilistic inference queries.

A system description of SPPL is given in the following paper:

SPPL: Probabilistic Programming with Fast Exact Symbolic Inference. Saad, F. A.; Rinard, M. C.; and Mansinghka, V. K. In PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, June 20-25, Virtual, Canada. ACM, New York, NY, USA. 2021. https://doi.org/10.1145/3453483.3454078.

Installation

This software is tested on Ubuntu 18.04 and requires a Python 3.6+ environment. SPPL is available on PyPI

$ python -m pip install sppl

To install the Jupyter interface, first obtain the system-wide dependencies in requirements.sh and then run

$ python -m pip install 'sppl[magics]'

Examples

The easiest way to use SPPL is via the browser-based Jupyter interface, which allows for interactive modeling, querying, and plotting. Refer to the .ipynb notebooks under the examples directory.

Benchmarks

Please refer to the artifact at the ACM Digital Library: https://doi.org/10.1145/3453483.3454078

Guide to Source Code

Please refer to GUIDE.md for a description of the main source files in this repository.

Tests

To run the test suite as a user, first install the test dependencies:

$ python -m pip install 'sppl[tests]'

Then run the test suite:

$ python -m pytest --pyargs sppl

To run the test suite as a developer:

  • To run crash tests: $ ./check.sh
  • To run integration tests: $ ./check.sh ci
  • To run a specific test: $ ./check.sh [<pytest-opts>] /path/to/test.py
  • To run the examples: $ ./check.sh examples
  • To build a docker image: $ ./check.sh docker
  • To generate a coverage report: $ ./check.sh coverage

To view the coverage report, open htmlcov/index.html in the browser.

Language Reference

Coming Soon!

Citation

To cite this work, please use the following BibTeX.

@inproceedings{saad2021sppl,
title           = {{SPPL:} Probabilistic Programming with Fast Exact Symbolic Inference},
author          = {Saad, Feras A. and Rinard, Martin C. and Mansinghka, Vikash K.},
booktitle       = {PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Design and Implementation},
pages           = {804--819},
year            = 2021,
location        = {Virtual, Canada},
publisher       = {ACM},
address         = {New York, NY, USA},
doi             = {10.1145/3453483.3454078},
address         = {New York, NY, USA},
keywords        = {probabilistic programming, symbolic execution, static analysis},
}

License

Apache 2.0; see LICENSE.txt

Acknowledgments

The logo was designed by McCoy R. Becker.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022