The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

Overview

pretraining-learning-curves

This is the repository for the paper When Do You Need Billions of Words of Pretraining Data?

Edge Probing

We use jiant1 for our edge probing experiments. This tutorial can help you set up the environment and get started with jiant.

Below is an example of how to reproduce our dependency labelling experiment with roberta-base-1B-3, which is one of the MiniBERTas we probe.

Download and Preprocess the Data

The commands below help you get and tokenize the data for the dependency labelling task. Remember to change directory to the root of the jiant and activate your jiant environment first.

mkdir data

mkdir data/edges

probing/data/get_ud_data.sh data/edges/dep_ewt

python probing/get_edge_data_labels.py -o data/edges/dep_ewt/labels.txt -i data/edges/dep_ewt/*.json

python probing/retokenize_edge_data.py -t nyu-mll/roberta-base-1B-3  data/edges/dep_ewt/*.json

Run the Experiment

If you have not used jiant before, you will probably need to set two critical environment variables:

$JIANT_PROJECT_PREFIX: the directory where logs and model checkpoints will be saved.

$JIANT_DATA_DIR: The data directory. Set it to PATH/TO/LOCAL/REPO/data

Now, you are ready to run the probing program:

python main.py –config_file jiant/config/edgeprobe/edgeprobe_miniberta.conf\ 
–overrides “exp_name=DL_tutorial, target_tasks=edges-dep-ud-ewt,\
transformers_output_mode=mix, input_module=nyu-mll/roberta-base-1B-3,\ 
target_train_val_interval=1000, batch_size=32, target_train_max_vals=130, lr=0.0005”

A logging message will be printed out after each validation. You should expect validation f1 to exceed 90 in only a few validations.

The final validation result will be printed after the experiment is finished, and can also be found in $JIANT_PROJECT_PREFIX/DL_tutorial/results.tsv. You should expect the final validation f1 to be around 95.

Minimum Description Length Probing with Edge Probing tasks

For this experiment, we use this fork of jiant1.

BLiMP

The code for our BLiMP experiments can be found here. You can already check results for our MiniBERTas.

If you want to rerun experiments on your own, we have prepared BLiMP data so you only need to include all dependencies for the environment and run scripts following the tutorial here. Note that when intalling dependencies CUDA version could be a problem when installing mxnet.

SuperGLUE

We use jiant2 for our SuperGLUE experiments. Get started with jiant2 using this guide and examples.

Owner
ML² AT CILVR
The Machine Learning for Language Group at NYU CILVR
ML² AT CILVR
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022