My implementation of Image Inpainting - A deep learning Inpainting model

Overview

Image Inpainting

What is Image Inpainting

Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within images. Typically, this process is done by professionals who use software to change the image to remove the imperfection painstakingly. A deep learning approach bypasses manual labor typically used in this process and applies a neural network to determine the proper fill for the parts of the image.

Examples

To see a higher quality version, click on the images

From left to right: original, interpolated, predicted

alt text alt text

Reasearch and Development

The model architecture is created using a fully convolutional deep residual network. I had pretty good intuition that this type of model would work, as it had on my previous projects for image restoration. I looked into other architectures such as UNET for inpainting but ran into troubles while implementing them.

First, UNET requires you to splice images during inference, meaning that the image splice had to be larger than the white space that the user is trying to inpaint. For example, if the splices you set up for inference were set up to take 64x64 chunks of the image and you managed to get whitespace that fully engulfed this splice, feeding this into the model would result in improper pixels due to the model not having any reference. This would require a different architecture that would detect the size of the white space for images so that you could adequately select the image splice size.

The following architecture I looked into and tried implementing was a GAN (Generative Adversarial Network) based model. I've experimented with GANs and implemented a model that could generate faces using images from the CelebA dataset; however, using GANs for Inpainting proved a much more complex problem. There are issues that I faced with proper ratios of the loss functions being L1 loss and the adversarial loss of the discriminator. Although a GAN-based model would likely drastically improve the output during inference, I could not tune the hyper-parameters enough to balance both the loss functions and the training of the generator and discriminator.

I resolved to use the current architecture described due to its simplicity and relatively adequate results.

Model Architecture

Methods Depth Filters Parameters Training Time
Inpaint Model 50 (49 layers) 192-3 15,945k ~30hrs

Network Architecture:

How do you use this model?

Due to the sheer size of this model, I can't fully upload it onto GitHub. Instead, I have opted to upload it via Google Drive, where you should be able to download it. Place this download '.h5' file and place it inside the 'weights/' directory.

How can you train your own model?

The model is instantiated within network.py. You can play around with hyper-parameters there. First, to train the model, delete the images currently within data/ put your training image data within that file - any large dataset such as ImageNet or an equivalent should work. Finally, mess with hyper-parameters in train.py and run train.py. If you’re training on weaker hardware, I’d recommend lowering the batch_size below the currently set 4 images.

Qualitative Examples (click on the images for higher quality):

Set 5 Evaluation Set:

Images Left to Right: Original, Interpolated, Predicted alt text alt text alt text alt text

Hardware - Training Statistics

Trained on 3070 ti
Batch Size: 4
Training Image Size: 96x96

Author

Joshua Evans - github/JoshVEvans
Owner
Joshua V Evans
Computer Systems Engineering | Arizona State University '25 | Interested in creating intelligent machines
Joshua V Evans
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022