OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

Related tags

Deep LearningOpenABC
Overview

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

Version License

Overview

OpenABC-D is a large-scale labeled dataset generated by synthesizing open source hardware IPs using state-of-art logic synthesis tool yosys-abc. We consider 29 open-source hardware IP designs collected from various sources (MIT-CEP, IWLS, OpenROAD, OpenPiton etc) and synthesized them with 1500 random synthesis flows (we call them synthesis recipes).

Each synthesis flow has a predefined length L (L=20, in our case). We preserved all AIGs: starting, intermediate and final AIGs with labels like number of nodes, longest path, sequence of atomic synthesis transofrmations (rewrite, refactor, balance etc.) along with graph statistics, area and delay of final AIG.

We converted the AIGs in pytorch data format that can be directly used by a machine learning engineer lessening the effort of costly labeled data generation and pre-processing. OpenABC-D can be used for a variety of learning tasks on logic synthesis such as

  1. Predicting quality of result (QoR) performance of a synthesis recipe on a hardware IP.
  2. Area and delay prediction post techonolgy mapping.
  3. Learn functional and structural features of AIG using self-supervised labels (useful for tasks like RL-based logic synthesis)

Our dataset can easily be used for graph-based machine learning framework like Pytorch-Geometric. The data generation pipeline of OpenABC-D is shown as follows:

Installing dependencies

We recommend using venv or Anaconda environment to install pre-requisites packages for running our framework and models. We list down the packages which we used on our side for experimentations. We recommend installing the packages using requirements.txt file provided in our repository.

  • cudatoolkit = 10.1
  • numpy >= 1.20.1
  • pandas >= 1.2.2
  • pickleshare >= 0.7.5
  • python >=3.9
  • pytorch = 1.8.1
  • scikit-learn = 0.24.1
  • torch-geometric=1.7.0
  • tqdm >= 4.56
  • seaborn >= 0.11.1
  • networkx >= 2.5
  • joblib >= 1.1.0

Here are few resources to install the packages (if not using requirements.txt)

Make sure that that the cudatoolkit version in the gpu matches with the pytorch-geometric's (and dependencies) CUDA version.

Organisation

Dataset directory structure

├── OPENABC_DATASET
│   ├── bench			# Original and synthesized bench files. Log reports post technology mapping
│   ├── graphml                # Graphml files
│   ├── lib			# Nangate 15nm technology library
│   ├── ptdata			# pytorch-geometric compatible data
│   ├── statistics		# Area, delay, number of nodes, depth of final AIGs for all designs
│   └── synScripts		# 1500 synthesis scripts customized for each design
  1. In bench directory, each design has a subfolder containing original bench file: design_orig.bench, a log folder containing log runs of 1500 synthesis recipes, and syn.zip file containing all bench files synthesized with synthesis recipe N.

  2. In graphml directory, each design has subfolder containing zipped graphml files corresponding to the bench files created for each synthesis runs.

  3. In lib directory, Nangate15nm.lib file is present. This is used for technology mapping post logic minimization.

  4. In ptdata directory, we have subfolders for each design having zipped pytorch file of the format designIP_synthesisID_stepID.pt. Also, we kept train-test split csv files for each learning tasks in subdirectories with naming convention lr_ID.

  5. In statistics diretcory, we have two subfolders: adp and finalAig. In adp, we have csv files for all designs with information about area and delay of final AIG post tech-mapping. In finalAig, csv files have information about graph characteristics of final AIGs obtained post optimization. Also, there is another file named synthesisstastistics.pickle which have all the above information in dictionary format. This file is used for labelling purpose in ML pipeline for various tasks.

  6. In synScripts directory, we have subfolders of each design having 1500 synthesis scripts.

Data generation

├── datagen
│   ├── automation 			      # Scripts for automation (Bulk/parallel runs for synthesis, AIG2Graph conversions etc.)
│   │   ├── automate_bulkSynthesis.py         # Shell script for each design to perform 1500 synthesis runs
│   │   ├── automate_finalDataCollection.py   # Script file to collect graph statistics, area and delay of final AIG
│   │   ├── automate_synbench2Graphml.py      # Shell script file generation to involking andAIG2Graphml.py
│   │   └── automate_synthesisScriptGen.py    # Script to generate 1500 synthesis script customized for each design
│   └── utilities
│       ├── andAIG2Graphml.py		      # Python utility to convert AIG BENCH file to graphml format
│       ├── collectAreaAndDelay.py            # Python utility to parse log and collect area and delay numbers
│       ├── collectGraphStatistics.py         # Python utility to for computing final AIG statistics
│       ├── pickleStatsForML.py               # Pickled file containing labels of all designs (to be used to assign labels in ML pipeline)
│       ├── PyGDataAIG.py		      # Python utility to convert synthesized graphml files to pytorch data format
│       └── synthID2SeqMapping.py	      # Python utility to annotate synthesis recipe using numerical encoding and dump in pickle form
  1. automation directory contains python scripts for automating bulk data generation (e.g. synthesis runs, graphml conversion, pytorch data generation etc.). utilities folder have utility scripts performing various tasks and called from automation scripts.

  2. Step 1: Run automate_synthesisScriptGen.py to generate customized synthesis script for 1500 synthesis recipes. One can see the template of a synthesis recipe in referenceDir.

  3. Step 2: Run automate_bultkSynthesis.py to generate a shell script for a design. Run the shell script to perform the synthesis runs. Make sure yosys-abc is available in PATH.

  4. Step 3: Run automate_synbench2Graphml.py to generate a shell script for generating graphml files. The shell script invokes andAIG2Graphml.py using 21 parallel threads processing data of each synthesis runs in sequence.

  5. Step 4: Run PyGDataAIG.py to generate pytorch data for each graphml file of the format designIP_synthesisID_stepID.pt.

  6. Step 5: Run collectAreaAndDelay.py and collectGraphStatistics.py to collect information about final AIG's statistics. Post that, run pickleStatsForML.py which will output synthesisStatistics.pickle file.

  7. Step 6: Run synthID2SeqMapping.py utility to generate synthID2Vec.pickle file containing numerically encoded data of synthesis recipes.

Benchmarking models: Training and evaluation

├── models
│   ├── classification
│   │   └── ClassNetV1
│   │       ├── model.py			# Graph convolution network based architecture model
│   │       ├── netlistDataset.py		# Dataset loader
│   │       ├── train.py			# Train and evaluation utility
│   │       └── utils.py			# Utitility functions
│   └── qor
│       ├── NetV1
│       │   ├── evaluate.py
│       │   ├── model.py
│       │   ├── netlistDataset.py
│       │   ├── train.py
│       │   └── utils.py
│       ├── NetV2
│       │   ├── evaluate.py
│       │   ├── model.py
│       │   ├── netlistDataset.py
│       │   ├── train.py
│       │   └── utils.py
│       └── NetV3
│           ├── evaluate.py
│           ├── model.py
│           ├── netlistDataset.py
│           ├── train.py
│           └── utils.py

models directory contains the benchmarked model described in details in our paper. The names of the python utilities are self explainatory.

Case 1: Prediction QoR of a synthesis recipe

We recommend creating a following folder hierarchy before training/evaluating a model using our dataset and model codes:

├── OPENABC-D
│   ├── lp1
│   │   ├── test_data_set1.csv
│   │   ├── test_data_set2.csv
│   │   ├── test_data_set3.csv
│   │   ├── train_data_set1.csv
│   │   ├── train_data_set2.csv
│   │   └── train_data_set3.csv
│   ├── lp2
│   │   ├── test_data_set1.csv
│   │   └── train_data_set1.csv
│   ├── processed
│   ├── synthesisStatistics.pickle
│   └── synthID2Vec.pickle

OPENABC-D is the top level directory containing the dataset, train-test split files, and labeled data available. Transfer all the relevant zipped pytorch data in the subdirectory processed.

The user can now go the models directory and run codes for training and evaluation. An example run for dataset split strategy 1 (Train on first 1000 synthesis recipe, predict QoR of next 500 recipe)

python train.py --datadir $HOME/OPENABC-D --rundir $HOMEDIR/NETV1_set1 --dataset set1 --lp 1 --lr 0.001 --epochs 60 --batch-size 32

Setting lp=1 and dataset=set1 will pick appropriate train-test split strategy dataset for QoR regression problem. The model will run for 60 epochs and report the training, validation and test performance on the dataset outputing appropriate plots.

Similarly for split-strategy 2 and 3, one can set the dataset as set2 and set3 respectively.

For evaluating performance of specific model on a custom curated dataset, a user can create appropriate csv file with dataset instances and add it to dictionary entry in train.py. For evaluating existing dataset split, one can run the following code.

python evaluate.py --datadir $HOME/OPENABC-D --rundir $HOMEDIR/NETV1_set1 --dataset set1 --lp 1 --model "gcn-epoch20-loss-0.813.pt" --batch-size 32

The test-MSE performance we obtained on our side are as follows:

Net Type Case-I Case-II Case-III
NetV1 0.648+-0.05 10.59+-2.78 0.588+-0.04
NetV2 0.815+-0.02 1.236+-0.15 0.538+-0.01
NetV3 0.579+-0.02 1.470+-0.14 0.536+-0.03
You might also like...
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

Exemplo de implementação do padrão circuit breaker em python
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Comments
  • Dataset for QoR prediction

    Dataset for QoR prediction

    Hi,

    We want to use your dataset to do QoR predictions. We followed your README.md file and downloaded the 19GB dataset for ML. We extracted the .pt files and read them, but are struggling to make sense of the numbers. The excel image shows the data we extracted from synthesisStatistics.pickle. Can you tell us what the numbers for each design indicate?

    image

    The snippet below shows the data we got from the 'ac97_ctrl_syn706_step0.pt'. This data is below: {'and_nodes': tensor(11464), 'desName': ['ac97_ctrl'], 'edge_index': tensor([[ 2339, 2340, 2340, ..., 15938, 15938, 15939], [ 2338, 2, 3, ..., 2336, 15932, 15938]]), 'edge_type': tensor([1, 0, 1, ..., 1, 0, 0]), 'longest_path': tensor(11), 'node_id': ['ys__n0', 'ys__n1', 'ys__n3', 'ys__n4', 'ys__n7', ...], 'node_type': tensor([0, 0, 0, ..., 1, 2, 1]), 'not_edges': tensor(14326), 'num_inverted_predecessors': tensor([0, 0, 0, ..., 1, 1, 0]), 'pi': tensor(2339), 'po': tensor(2137), 'stepID': [0], 'synID': [706], 'synVec': tensor([1, 4, 5, 6, 0, 3, 0, 1, 6, 1, 1, 4, 6, 1, 1, 3, 0, 1, 0, 5])} Can you explain how do we get the timing numbers from the above?

    We were wondering if we need to download the 1.4TB zipped files to generate the ML training and testing datasets, or is there a better way to go about this? Can you guide us on how to use the useful datapoints from the 1.4TB dataset without downloading it all? We are students of UC San Diego and trying to maximize our resource utilization.

    Thank you!

    opened by ankursharma129 4
  • Zip file of initial AIG

    Zip file of initial AIG

    The origin full dataset is too huge, we have trouble to download it. Since, we only want the the initial AIG file. We want to know, is there any zip file/link that only have the initial AIG files? Thanks.

    opened by lirui-shanghaitech 2
Releases(v1.0)
Owner
NYU Machine-Learning guided Design Automation (MLDA)
Machine-learning aided Chip design
NYU Machine-Learning guided Design Automation (MLDA)
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
JugLab 33 Dec 30, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022