Multi-Modal Machine Learning toolkit based on PaddlePaddle.

Related tags

Deep LearningPaddleMM
Overview

简体中文 | English

PaddleMM

简介

飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。

近期更新

  • 2022.1.5 发布 PaddleMM 初始版本 v1.0

特性

  • 丰富的任务场景:工具包提供多模态融合、跨模态检索、图文生成等多种多模态学习任务算法模型库,支持用户自定义数据和训练。
  • 成功的落地应用:基于工具包算法已有相关落地应用,如球鞋真伪鉴定、球鞋风格迁移、家具图片自动描述、舆情监控等。

应用展示

  • 球鞋真伪鉴定 (更多信息欢迎访问我们的网站 Ysneaker !)
  • 更多应用

落地实践

  • 与百度人才智库(TIC)合作 智能招聘 简历分析,基于多模态融合算法并成功落地。

框架

PaddleMM 包括以下模块:

  • 数据处理:提供统一的数据接口和多种数据处理格式
  • 模型库:包括多模态融合、跨模态检索、图文生成、多任务算法
  • 训练器:对每种任务设置统一的训练流程和相关指标计算

使用

下载工具包

git clone https://github.com/njustkmg/PaddleMM.git

使用示例:

from paddlemm import PaddleMM

# config: Model running parameters, see configs/
# data_root: Path to dataset
# image_root: Path to images
# gpu: Which gpu to use

runner = PaddleMM(config='configs/cmml.yml',
                  data_root='data/COCO', 
                  image_root='data/COCO/images', 
                  gpu=0)

runner.train()
runner.test()

或者

python run.py --config configs/cmml.yml --data_root data/COCO --image_root data/COCO/images --gpu 0

模型库 (更新中)

[1] Comprehensive Semi-Supervised Multi-Modal Learning

[2] Stacked Cross Attention for Image-Text Matching

[3] Similarity Reasoning and Filtration for Image-Text Matching

[4] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

[5] Attention on Attention for Image Captioning

[6] VQA: Visual Question Answering

[7] ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

实验结果 (COCO) (更新中)

  • Multimodal fusion
Average_Precision Coverage Example_AUC Macro_AUC Micro_AUC Ranking_Loss
CMML 0.682 18.827 0.948 0.927 0.950 0.052 semi-supervised
Early(add) 0.974 16.681 0.969 0.952 0.968 0.031 VGG+LSTM
Early(add) 0.974 16.532 0.971 0.958 0.972 0.029 ResNet+GRU
Early(concat) 0.797 16.366 0.972 0.959 0.973 0.028 ResNet+LSTM
Early(concat) 0.798 16.541 0.971 0.959 0.972 0.029 ResNet+GRU
Early(concat) 0.795 16.704 0.969 0.952 0.968 0.031 VGG+LSTM
Late(mean) 0.733 17.849 0.959 0.947 0.963 0.041 ResNet+LSTM
Late(mean) 0.734 17.838 0.959 0.945 0.962 0.041 ResNet+GRU
Late(mean) 0.738 17.818 0.960 0.943 0.962 0.040 VGG+LSTM
Late(mean) 0.735 17.938 0.959 0.941 0.959 0.041 VGG+GRU
Late(max) 0.742 17.953 0.959 0.944 0.961 0.041 ResNet+LSTM
Late(max) 0.736 17.955 0.959 0.941 0.961 0.041 ResNet+GRU
Late(max) 0.727 17.949 0.958 0.940 0.959 0.042 VGG+LSTM
Late(max) 0.737 17.983 0.959 0.942 0.959 0.041 VGG+GRU
  • Image caption
Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider
NIC(paper) 71.8 50.3 35.7 25.0 23.0 - -
NIC-VGG(ours) 69.9 52.4 37.9 27.1 23.4 51.4 84.5
NIC-ResNet(ours) 72.8 56.0 41.4 30.1 25.2 53.7 95.9
AoANet-CE(paper) 78.7 - - 38.1 28.4 57.5 119.8
AoANet-CE(ours) 75.1 58.7 44.4 33.2 27.2 55.8 109.3

成果

多模态论文

  • Yang Yang, Chubing Zhang, Yi-Chu Xu, Dianhai Yu, De-Chuan Zhan, Jian Yang. Rethinking Label-Wise Cross-Modal Retrieval from A Semantic Sharing Perspective. Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-2021), Montreal, Canada, 2021. (CCF-A).
  • Yang Yang, Ke-Tao Wang, De-Chuan Zhan, Hui Xiong, Yuan Jiang. Comprehensive Semi-Supervised Multi-Modal Learning. Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019) , Macao, China, 2019. [Pytorch Code] [Paddle Code]
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Deep Robust Unsupervised Multi-Modal Network. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019) , Honolulu, Hawaii, 2019.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Yuan Jiang. Deep Multi-modal Learning with Cascade Consensus. Proceedings of the Pacific Rim International Conference on Artificial Intelligence (PRICAI-2018) , Nanjing, China, 2018.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Complex Object Classification: A Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. Proceedings of the Annual Conference on ACM SIGKDD (KDD-2018) , London, UK, 2018. [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, Yuan Jiang. Semi-Supervised Multi-Modal Learning with Incomplete Modalities. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-2018) , Stockholm, Sweden, 2018.
  • Yang Yang, De-Chuan Zhan, Ying Fan, and Yuan Jiang. Instance Specific Discriminative Modal Pursuit: A Serialized Approach. Proceedings of the 9th Asian Conference on Machine Learning (ACML-2017) , Seoul, Korea, 2017. [Best Paper] [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Yu Guo, and Yuan Jiang. Modal Consistency based Pre-trained Multi-Model Reuse. Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-2017) , Melbourne, Australia, 2017.
  • Yang Yang, De-Chuan Zhan, Yin Fan, Yuan Jiang, and Zhi-Hua Zhou. Deep Learning for Fixed Model Reuse. Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-2017), San Francisco, CA. 2017.
  • Yang Yang, De-Chuan Zhan and Yuan Jiang. Learning by Actively Querying Strong Modal Features. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-2016), New York, NY. 2016, Page: 1033-1039.
  • Yang Yang, Han-Jia Ye, De-Chuan Zhan and Yuan Jiang. Auxiliary Information Regularized Machine for Multiple Modality Feature Learning. Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015), Buenos Aires, Argentina, 2015, Page: 1033-1039.
  • Yang Yang, De-Chuan Zhan, Yi-Feng Wu, Zhi-Bin Liu, Hui Xiong, and Yuan Jiang. Semi-Supervised Multi-Modal Clustering and Classification with Incomplete Modalities. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)
  • Yang Yang, Zhao-Yang Fu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)

更多论文欢迎访问我们的网站 njustlkmg

飞桨论文复现挑战赛

  • 飞桨论文复现挑战赛 (第四期):《Comprehensive Semi-Supervised Multi-Modal Learning》赛题冠军
  • 飞桨论文复现挑战赛 (第五期):《From Recognition to Cognition: Visual Commonsense Reasoning》赛题冠军

贡献

  • 非常感谢百度人才智库(TIC)提供的技术和应用落地支持。
  • 我们非常欢迎您为 PaddleMM 贡献代码,也十分感谢你的反馈。

许可证书

本项目的发布受 Apache 2.0 license 许可认证。

Owner
njustkmg
njustkmg
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022