Exploiting Robust Unsupervised Video Person Re-identification

Related tags

Deep LearninguPMnet
Overview

Exploiting Robust Unsupervised Video Person Re-identification

LICENSE Python tensorflow

Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv].

PWC PWC PWC

framework

Getting Started

Requirements

Here is a brief instruction for installing the experimental environment.

# install virtual envs
$ conda create -n uPMnet python=2.7 -y
$ conda activate uPMnet

# install tensorflow 1.4.0 with cuda 9.0
$ pip install --ignore-installed --upgrade https://github.com/mind/wheels/releases/download/tf1.4-gpu-cuda9/tensorflow-1.4.0-cp27-cp27mu-linux_x86_64.whl

# install mkl
$ sudo apt install cmake
$ git clone --branch v0.12 https://github.com/01org/mkl-dnn.git
$ cd mkl-dnn/scripts; ./prepare_mkl.sh && cd ..
$ mkdir -p build && cd build && cmake .. && make -j36
$ sudo make install
$ echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib' >> ~/.bashrc

# install other dependencies
$ pip install scipy matplotlib

Convert benchmarks to tfrecords

# Please modify the path in your way
$ bash datasets/convert_data_to_tfrecords.py

Download pre-trained models

The Mobilenet and Resnet models can be downloaded in this link (code: 1upx) and should be put in the checkpoints directory.

Training and Extracting features

$ bash scripts/train_PRID2011.sh # train_iLIDS_VID.sh or train_DukeMTMC-VideoReID.sh

Testing

Use the Matlab to run the following files, evaluation/CMC_PRID2011.m, evaluation/CMC_iLIDS-VID.m, and evaluation/CMC_DukeMTMC_VideoReID.m.

Results in the Paper

The results of PRID2011, iLIDS-VID, and DukeMTMC-VideoReID are provided.

Model [email protected] [email protected] [email protected]
uPMnet 92.0 link (code: xa7z) 63.1 link (code: le2c) 83.6 link (code: e9ja)

You can download these results and put them in the results directory. Then use Matlab to evaluate them.

Acknowledgement

This repository is built upon the repository DAL.

Citation

If you find this project useful for your research, please kindly cite:

@article{zang2021exploiting,
  title={Exploiting Robust Unsupervised Video Person Re-identification},
  author={Zang, Xianghao and Li, Ge and Gao, Wei and Shu, Xiujun},
  journal={arXiv preprint arXiv:2111.05170},
  year={2021}
}

License

This repository is released under the GPL-2.0 License as found in the LICENSE file.

Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022