Compact Bidirectional Transformer for Image Captioning

Related tags

Deep LearningCBTrans
Overview

Compact Bidirectional Transformer for Image Captioning

Requirements

  • Python 3.8
  • Pytorch 1.6
  • lmdb
  • h5py
  • tensorboardX

Prepare Data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please download the converted VinVL feature from this link and place them under data/mscoco_VinVL/. You can also optionally follow this instruction to prepare the fixed or adaptive bottom-up features extracted by Anderson and place them under data/mscoco/ or data/mscoco_adaptive/.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results of single CBTIC model on Karpathy test split, just run

python  eval.py  --model  save/nsc-transformer-cb-VinVL-feat/model-best.pth   --infos_path  save/nsc-transformer-cb-VinVL-feat/infos_nsc-transformer-cb-VinVL-feat-best.pkl      --beam_size   2   --id  nsc-transformer-cb-VinVL-feat   --split test

To reproduce the results of ensemble of CBTIC models on Karpathy test split, just run

python eval_ensemble.py   --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --beam_size  2   --split  test

Online Evaluation

Please first run

python eval_ensemble.py   --split  test  --language_eval 0  --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --input_json  data/cocotest.json  --input_fc_dir data/mscoco_VinVL/cocobu_test2014/cocobu_fc --input_att_dir  data/mscoco_VinVL/cocobu_test2014/cocobu_att   --input_label_h5    data/cocotalk_bw_label.h5    --language_eval 0        --batch_size  128   --beam_size   2   --id   captions_test2014_cbtic_results 

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as using VinVL feature, run
python  train.py   --noamopt --noamopt_warmup 20000   --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0  --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15     --checkpoint_path   save/transformer-cb-VinVL-feat   --id   transformer-cb-VinVL-feat   --caption_model  cbt     --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box    
  1. Then in the second training stage, you need two GPUs with 12G memory each, please copy the above pretrained model first
cd save
./copy_model.sh  transformer-cb-VinVL-feat    nsc-transformer-cb-VinVL-feat
cd ..

and then run

python  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 14  --max_epochs    30  --start_from   save/nsc-transformer-cb-VinVL-feat     --checkpoint_path   save/nsc-transformer-cb-VinVL-feat   --id  nsc-transformer-cb-VinVL-feat   --caption_model  cbt    --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box 

Note

  1. Even if fixing all random seed, we find that the results of the two runs are still slightly different when using DataParallel on two GPUs. However, the results can be reproduced exactly when using one GPU.
  2. If you are interested in the ablation studies, you can use the git reflog to list all commits and use git reset --hard commit_id to change to corresponding commit.

Citation

@misc{zhou2022compact,
      title={Compact Bidirectional Transformer for Image Captioning}, 
      author={Yuanen Zhou and Zhenzhen Hu and Daqing Liu and Huixia Ben and Meng Wang},
      year={2022},
      eprint={2201.01984},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022