Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Overview

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Setting up a python environment

  • Follow the instruction in https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html for downloading and installing Miniconda

  • Open a terminal in the code directory

  • Create an environment using the .yml file:

    conda env create -f deepsatmodels_env.yml

  • Activate the environment:

    source activate deepsatmodels

  • Install required version of torch:

    conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch-nightly

Datasets

MTLCC dataset (Germany)

Download the dataset (.tfrecords)

The data for Germany can be downloaded from: https://github.com/TUM-LMF/MTLCC

  • clone the repository in a separate directory:

    git clone https://github.com/TUM-LMF/MTLCC

  • move to the MTLCC root directory:

    cd MTLCC

  • download the data (40 Gb):

    bash download.sh full

Transform the dataset (.tfrecords -> .pkl)

  • go to the "CSCL_code" home directory:

    cd <.../CSCL_code>

  • activate the "cssl" python environment:

    conda activate cscl

  • add "CSCL_code" home directory to PYTHONPATH:

    export PYTHONPATH="<.../CSCL_code>:$PYTHONPATH"

  • Run the "data/MTLCC/make_pkl_dataset.py" script. Parameter numworkers defines the number of parallel processes employed:

    python data/MTLCC/make_pkl_dataset.py --rootdir <.../MTLCC> --numworkers

  • Running the above script will have the following effects:

    • will create a paths file for the tfrecords files in ".../MTLCC/data_IJGI18/datasets/full/tfrecords240_paths.csv"
    • will create a new directory to save data ".../MTLCC/data_IJGI18/datasets/full/240pkl"
    • will save data in ".../MTLCC/data_IJGI18/datasets/full/240pkl/ "
    • will save relative paths for all data, train data, eval data in ".../MTLCC/data_IJGI18/datasets/full/240pkl"

T31TFM_1618 dataset (France)

Download the dataset

The T31TFM_1618 dataset can be downloaded from Google drive here. Unzipping will create the following folder tree.

T31TFM_1618
├── 2016
│   ├── pkl_timeseries
│       ├── W799943_N6568107_E827372_S6540681
│       |   └── 6541426_800224_2016.pickle
|       |   └── ...
|       ├── ...
├── 2017
│   ├── pkl_timeseries
│       ├── W854602_N6650582_E882428_S6622759
│       |   └── 6623702_854602_2017.pickle
|       |   └── ...
|       ├── ...
├── 2018
│   ├── pkl_timeseries
│       ├── W882228_N6595532_E909657_S6568107
│       |   └── 6568846_888751_2018.pickle
|       |   └── ...
|       ├── ...
├── deepsatdata
|   └── T31TFM_16_products.csv
|   └── ...
|   └── T31TFM_16_parcels.csv
|   └── ...
└── paths
    └── train_paths.csv
    └── eval_paths.csv

Recreate the dataset from scratch

To recreate the dataset use the DeepSatData data generation pipeline.

  • Clone and move to the DeepSatData base directory
git clone https://github.com/michaeltrs/DeepSatData
cd .../DeepSatData
  • Download the Sentinel-2 products.
sh download/download.sh .../T31TFM_16_parcels.csv,.../T31TFM_17_parcels.csv,.../T31TFM_18_parcels.csv
  • Generate a labelled dataset (use case 1) for each year.
sh dataset/labelled_dense/make_labelled_dataset.sh ground_truths_file=<1:ground_truths_file> products_dir=<2:products_dir> labels_dir=<3:labels_dir> windows_dir=<4:windows_dir> timeseries_dir=<5:timeseries_dir> 
res=<6:res> sample_size=<7:sample_size> num_processes<8:num_processes> bands=<8:bands (optional)>

Experiments

Initial steps

  • Add the base directory and paths to train and evaluation path files in "data/datasets.yaml".

  • For each experiment we use a separate ".yaml" configuration file. Examples files are providedided in "configs". The default values filled in these files correspond to parameters used in the experiments presented in the paper.

  • activate "deepsatmodels" python environment:

    conda activate deepsatmodels

Model training

Modify respective .yaml config files accordingly to define the save directory or loading a pre-trained model from pre-trained checkpoints.

Randomly initialized "UNet3D" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3D.yaml --gpu_ids 0,1`

Randomly initialized "UNet2D-CLSTM" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet2D-CLSTM" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet2D_CLSTM_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1

Randomly initialized "UNet3Df" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet3Df" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet3Df_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1
Owner
Michael Tarasiou
Michael Tarasiou
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022