Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Overview

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Setting up a python environment

  • Follow the instruction in https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html for downloading and installing Miniconda

  • Open a terminal in the code directory

  • Create an environment using the .yml file:

    conda env create -f deepsatmodels_env.yml

  • Activate the environment:

    source activate deepsatmodels

  • Install required version of torch:

    conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch-nightly

Datasets

MTLCC dataset (Germany)

Download the dataset (.tfrecords)

The data for Germany can be downloaded from: https://github.com/TUM-LMF/MTLCC

  • clone the repository in a separate directory:

    git clone https://github.com/TUM-LMF/MTLCC

  • move to the MTLCC root directory:

    cd MTLCC

  • download the data (40 Gb):

    bash download.sh full

Transform the dataset (.tfrecords -> .pkl)

  • go to the "CSCL_code" home directory:

    cd <.../CSCL_code>

  • activate the "cssl" python environment:

    conda activate cscl

  • add "CSCL_code" home directory to PYTHONPATH:

    export PYTHONPATH="<.../CSCL_code>:$PYTHONPATH"

  • Run the "data/MTLCC/make_pkl_dataset.py" script. Parameter numworkers defines the number of parallel processes employed:

    python data/MTLCC/make_pkl_dataset.py --rootdir <.../MTLCC> --numworkers

  • Running the above script will have the following effects:

    • will create a paths file for the tfrecords files in ".../MTLCC/data_IJGI18/datasets/full/tfrecords240_paths.csv"
    • will create a new directory to save data ".../MTLCC/data_IJGI18/datasets/full/240pkl"
    • will save data in ".../MTLCC/data_IJGI18/datasets/full/240pkl/ "
    • will save relative paths for all data, train data, eval data in ".../MTLCC/data_IJGI18/datasets/full/240pkl"

T31TFM_1618 dataset (France)

Download the dataset

The T31TFM_1618 dataset can be downloaded from Google drive here. Unzipping will create the following folder tree.

T31TFM_1618
├── 2016
│   ├── pkl_timeseries
│       ├── W799943_N6568107_E827372_S6540681
│       |   └── 6541426_800224_2016.pickle
|       |   └── ...
|       ├── ...
├── 2017
│   ├── pkl_timeseries
│       ├── W854602_N6650582_E882428_S6622759
│       |   └── 6623702_854602_2017.pickle
|       |   └── ...
|       ├── ...
├── 2018
│   ├── pkl_timeseries
│       ├── W882228_N6595532_E909657_S6568107
│       |   └── 6568846_888751_2018.pickle
|       |   └── ...
|       ├── ...
├── deepsatdata
|   └── T31TFM_16_products.csv
|   └── ...
|   └── T31TFM_16_parcels.csv
|   └── ...
└── paths
    └── train_paths.csv
    └── eval_paths.csv

Recreate the dataset from scratch

To recreate the dataset use the DeepSatData data generation pipeline.

  • Clone and move to the DeepSatData base directory
git clone https://github.com/michaeltrs/DeepSatData
cd .../DeepSatData
  • Download the Sentinel-2 products.
sh download/download.sh .../T31TFM_16_parcels.csv,.../T31TFM_17_parcels.csv,.../T31TFM_18_parcels.csv
  • Generate a labelled dataset (use case 1) for each year.
sh dataset/labelled_dense/make_labelled_dataset.sh ground_truths_file=<1:ground_truths_file> products_dir=<2:products_dir> labels_dir=<3:labels_dir> windows_dir=<4:windows_dir> timeseries_dir=<5:timeseries_dir> 
res=<6:res> sample_size=<7:sample_size> num_processes<8:num_processes> bands=<8:bands (optional)>

Experiments

Initial steps

  • Add the base directory and paths to train and evaluation path files in "data/datasets.yaml".

  • For each experiment we use a separate ".yaml" configuration file. Examples files are providedided in "configs". The default values filled in these files correspond to parameters used in the experiments presented in the paper.

  • activate "deepsatmodels" python environment:

    conda activate deepsatmodels

Model training

Modify respective .yaml config files accordingly to define the save directory or loading a pre-trained model from pre-trained checkpoints.

Randomly initialized "UNet3D" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3D.yaml --gpu_ids 0,1`

Randomly initialized "UNet2D-CLSTM" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet2D-CLSTM" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet2D_CLSTM_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1

Randomly initialized "UNet3Df" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet3Df" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet3Df_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1
Owner
Michael Tarasiou
Michael Tarasiou
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022