Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Related tags

Deep LearningASL
Overview

Shaping Visual Representations with Attributes for Few-Shot Learning

This code implements the Shaping Visual Representations with Attributes for Few-Shot Learning (ASL).

Citation

If you find our work useful, please consider citing our work using the bibtex:

@Article{chen2021asl,
	author  = {Chen, Haoxing and Li, Huaxiong and Li, Yaohui and Chen, Chunlin},
	title   = {Shaping Visual Representations with Attributes for Few-Shot Learning},
	journal = {arXiv preprint arXiv:2112.06398},
	year    = {2021},
}

Prerequisites

  • Linux
  • Python 3.7
  • Pytorch 1.2
  • Torchvision 0.4
  • GPU + CUDA CuDNN

Datasets

You can download datasets automatically by adding --download when running the program. However, here we give steps to manually download datasets to prevent problems such as poor network connection: CUB:

  1. Create the dir ASL/datasets/cub;
  2. Download CUB_200_2011.tgz from here, and put the archive into ASL/datasets/cub;
  3. Running the program with --download.

SUN:

  1. Create the dir ASL/datasets/sun;
  2. Download the archive of images from here, and put the archive into ASL/datasets/sun;
  3. Download the archive of attributes from here, and put the archive into ASL/datasets/sun;
  4. Running the program with --download.

Few-shot Classification

Download data and run on multiple GPUs with special settings:

python train.py --train-data [train_data] --test-data [test_data] --backbone [backbone] --num-shots [num_shots] --batch-tasks [batch_tasks] --train-tasks [train_tasks] --semantic-type [semantic_type] --multi-gpu --download

Run on CUB dataset, ResNet-12 backbone, 1-shot, single GPU

python train.py --train-data cub --test-data cub --backbone resnet12 --num-shots 1 --batch-tasks 4 --train-tasks 60000 --semantic-type class_attributes

Note that batch tasks are set to 4/1 when training 1-shot/5-shot tasks.

Our code is based on AGAM and TorchMeta.

Contacts

Please feel free to contact us if you have any problems.

Email: [email protected]

Owner
chx_nju
Master student in Nanjing University.
chx_nju
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022